# Future prospects for LHCb and complementarity with Belle II



LIO International Conference on Flavour Physics, Lyon, 19<sup>th</sup> April 2018 Mitesh Patel (Imperial College London) on behalf of the LHCb collaboration

## Introduction

- Have heard extensively about the interesting anomalies that have appeared in measurements of b→sll decays :
  - Angular observables in  $B^0 \rightarrow K^{*0} \mu \mu$
  - Branching fractions of several of  $b \rightarrow sll$  processes
  - Lepton-flavour universality ratios in  $b \rightarrow sll$  decays
- Will try and say something about the future of these measurements
- Extent of discrepancies depends on several theoretical issues – will try and highlight where experiment can provide some future input into these issues

## Outline

- Short term prospects
- Further into the future LHCb upgrade phase I (2021-2030)
- Far future LHCb upgrade phase II (2031...)

#### Short term prospects



LHCb Integrated Recorded Luminosity in pp, 2010-2017

#### Angular measurements

- Updated angular measurements of B<sup>0</sup>→K\*<sup>0</sup>µµ in progress and will remain statistically limited – can expect a ~√2 increase in precision cf Run I results
- Other µµ channels should follow, as should updated branching fraction measurements
- Work on B<sup>0</sup>→K<sup>\*0</sup>ee also in progress but more challenging



#### R<sub>X</sub> – experimental issues





Take double ratio with  $B^+ \rightarrow J/\psi K^+$  decays to cancel possible systematic biases.

In 3 fb<sup>-1</sup> LHCb determines

 $R_{\rm K} = 0.745^{+0.090}_{-0.074} (\text{stat})^{+0.036}_{-0.036} (\text{syst})$ which is consistent with SIM at 2.6 $\sigma$ .





 Work in progress to update with part of additional data already have in-hand

- Run-II data (2015,16) gives 0.3+1.6 fb<sup>-1</sup> but,  $PRL^{113}(2014)^{151601}$ with nearly twice cross-section, slightly better trigger : ~250  $\rightarrow$  ~800 B<sup>+</sup> $\rightarrow$ K<sup>+</sup>e<sup>+</sup>e<sup>-</sup> candidates (1.0<q<sup>2</sup><6.0 GeV<sup>2</sup>)

 $\rightarrow$  Can expect stat. error on R<sub>K</sub> to go down a factor ~1.8

T. Biake

- Systematics likely to differ but expect to be data-driven
- Also have (in-hand) further 1.7fb<sup>-1</sup> from 2017

# $R_{K}$ update – other $q^{2}$ regions

- Little signal with q<sup>2</sup><1.0 GeV<sup>2</sup> (no photon pole)
- Can add high q<sup>2</sup> bin difficulty same for R<sub>K</sub> and R<sub>K</sub>\*
  - Rare decays with higher K(\*)
    resonances can leak into signal region from below
  - $\psi(2S)K^*$  decays can leak into signal region on the upper side
  - Signal sandwiched between these and hence difficult to fit reliably





- Signal suppressed by f<sub>s</sub>/f<sub>d</sub>~0.25 and B(φ→K<sup>+</sup>K<sup>-</sup>)=½ but has experimental advantages:
  - Narrow mass helps reduce partially reconstructed bkgrds
  - Absence of higher resonances that decay φπ suppresses backgrounds – largest involves missing K, rather than missing π in R<sub>K</sub><sup>(\*)</sup> analyses



# $R_{K}^{*}$ update

- 3fb<sup>-1</sup> Run-I analysis found
  - ~90 B<sup>0</sup>→K<sup>\*0</sup>e<sup>+</sup>e<sup>-</sup> candidates in 0.045<q<sup>2</sup><1.1 GeV<sup>2</sup> and ~110 B<sup>0</sup>→K<sup>\*0</sup>e<sup>+</sup>e<sup>-</sup> candidates in 1.1<q<sup>2</sup><6.0 GeV<sup>2</sup>
- *Lнср*

- Analysis will be updated with Run-II data
  - Improvements do offline processing already included in most recent result
  - Can expect to gain from further  $M_{M \text{ from CDHMV}}$  $0.3+1.6(+1.7) \text{ fb}^{-02} \text{ data}_{el} \text{ (at y twice } M_{M \text{ from LOS}}^{\text{SM from EOS}} \text{ section)}$



- Again, expect to be stat. limited
- $\rightarrow$  Can expect existing errors to go down a factor ~1.5

# Further R<sub>X</sub> analyses

- Updates should be sufficient to confirm any discrepancy with real significance, independent of (very important) combination with angular, muon mode BF data etc.
- Several additional final states are under study : pK, Kππ, higher K\* resonances, K<sub>S</sub> and K<sup>\*+</sup> and will follow

Run I statistics in muon modes: pKμμ ~600

Кππμμ ~360 K\*\*μμ ~230 K<sub>S</sub>μμ ~30 K\*+μμ ~40

#### Further into the future

### Further into the future

- Final yr of Run-II data-taking is just starting in earnest:
  - <u>https://lbevent.cern.ch/</u>
    <u>EventDisplay/index.html</u>
- LHC will then have a two year shutdown during which LHCb will install upgraded detector – from 2021-2030 this will allow 50fb<sup>-1</sup> to be accumulated
- On same timescale, Belle2
  physics data-taking will start





## Phase I Upgrade

- Full software trigger to allow effective operation at higher luminosities with higher efficiency for hadronic decays
- Luminosity to be raised (x5) to 2x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>



### Future angular analysis

- Large dataset would enable us to parameterise and fit for form factors as part of fit to angular distribution, q<sup>2</sup>
  - Could then simultaneously constrain BF(\*) and angular observables to get Wilson coefficients
  - (\*) need Belle2 to improve knowledge of J/ $\psi$  normaln modes



#### Future angular analysis

- Can make difference between  $P_5'(e)$  and  $P_5'(\mu) \rightarrow Q_5$
- Thus far, only done by Belle full angular analysis of B<sup>0</sup>→K<sup>\*0</sup>ee in progress at LHCb



#### **Electron analyses**

- Need to drive systematics down to ~1% level to get benefit from upgrade dataset
- Large uncertainty from modelling backgrounds which can study with data and hence will scale with luminosity, ditto data-derived corrections to simulation
- However, sub-dominant uncertainties from e.g. modelling of bremsstrahlung



#### $B^0 \rightarrow \mu^+ \mu^-$ branching fractions

- Can explain anomalies with  $C_9^{NP} = -C_{10}^{NP}$
- Would then expect to see an effect in  $B(B^0 \rightarrow \mu^+ \mu^-)$  decays
- No evidence for any deviation from SM so far...



#### Far future

## Phase-II Upgrade

- Expression of interest for LHCb phase-II upgrade submitted to the LHCC in February 2017
- Target 300fb<sup>-1</sup> in runs 5,6 requires v. significant upgrade



## Upgrade projections (stat)

 Improvements in observables will have potential to distinguish between different NP models

e.g.  $\Delta C_9 = -\Delta C_{10} = -0.7$  vs  $\Delta C_9 = -1.4$  (SM)



## Upgrade projections (stat)

 Difference between C<sub>9</sub>, C<sub>10</sub> computed in electron and muon modes will discriminate between models



## Testing MFV with $b \rightarrow dII$



on of  $B^+ \rightarrow \pi^+ \mu^+ \mu^-$  in bins of dilepton invariant mass taken from Refs. [1] (APR13), [6] (HKR15) and from C15).

## Testing MFV with $b \rightarrow dII$

- CKM suppressed  $B_s^0 \rightarrow K^{*0}\mu\mu$  will enable full angular analysis with comparable precision to Run-1  $B^0 \rightarrow K^{*0}\mu\mu$ 
  - Simultaneous fit of B<sup>0</sup> mode will help separate B<sub>s</sub><sup>0</sup> and B<sup>0</sup> angular observables but improved mass resolution would clearly help
- $B^0 \rightarrow \rho^0 \mu \mu$  requires flavour tag., also multiple  $\pi \pi$  resonances
  - $B^+ \rightarrow \rho^+ \mu \mu$  would avoid flavour tagging but gives  $\pi^0$
  - $\Lambda_b \rightarrow p\pi\mu\mu$  would similarly suffer from (many)  $p\pi$  resonances



### Conclusions

- Interesting set of anomalies observed in B decays
- Near-term updates should clarify the situation and can help constrain some of the theoretical issues
- Wide range of new measurements will be added to broaden the constraints on the underlying physics
- Phase-I upgrade will give 50fb<sup>-1</sup> dataset and a wide range of new measurements on same timescale as Belle2
- LHCb collaboration targeting a further 300fb<sup>-1</sup> phase-II upgrade beyond this