CKM parameters from the observables in $B ightarrow (\pi, {\it K}) \ell^+ \ell^-$ decays

Aleksey Rusov University of Siegen, Germany

LIO International Conference on Flavour Physics: "From Flavour to New Physics" 18–20 April 2018, INPL, Lyon

based on A. Khodjamirian, A.V. Rusov, JHEP 1708 (2017) 112

Aleksey Rusov

Motivation

- Recently, the ratio $|V_{td}/V_{ts}|$ has been extracted from the measured $B \to \pi \ell^+ \ell^-$ and $B \to K \ell^+ \ell^-$ partial decay widths [LHCb, JHEP10(2015)034]
- Actually, the ratio of $B \to \pi \ell^+ \ell^-$ and $B \to K \ell^+ \ell^-$ partial decay widths has more complicated CKM structure
- In principle, it's possible to constrain the Wolfenstein parameters of the CKM matrix from the observables in $B \rightarrow \pi \ell^+ \ell^-$ and $B \rightarrow K \ell^+ \ell^-$ decays
- \rightarrow One needs to accurately determine the hadronic input:
 - * Form factors
 - * Hadronic amplitudes of nonlocal effects

We consider semileptonic $B \rightarrow P \ell^+ \ell^-$ decays ($\ell = e, \mu, P = \pi, K$)

Effective Hamiltonian for $b \rightarrow q$ [Buchalla, Buras, Lautenbacher (1996)]

$$\mathcal{H}_{\mathrm{eff}}^{b \to q} = \frac{4G_F}{\sqrt{2}} \left(\lambda_u^{(q)} \sum_{i=1}^2 C_i \mathcal{O}_i^u + \lambda_c^{(q)} \sum_{i=1}^2 C_i \mathcal{O}_i^c - \lambda_t^{(q)} \sum_{i=3}^{10} C_i \mathcal{O}_i \right) + h.c.$$

$$\lambda_{p}^{(q)} = V_{pb}V_{pq}^{*}, \quad p = u, c, t, \quad q = d, s$$

$$B \to K\ell^{+}\ell^{-}: \quad \lambda_{t}^{(s)} \approx -\lambda_{c}^{(s)} \sim \lambda^{2} \gg \lambda_{u}^{(s)} \sim \lambda^{4}$$

$$B \to \pi\ell^{+}\ell^{-}: \quad \lambda_{t}^{(d)} \sim \lambda_{c}^{(d)} \sim \lambda_{u}^{(d)} \sim \lambda^{3}$$

Aleksey Rusov

Hadronic input

Form Factors

$$\langle P(p) | \bar{q} \gamma^{\mu} b | B(p+q) \rangle = f_{BP}^{+}(q^{2}) \left(2p^{\mu} + q^{\mu} \right) + \left(f_{BP}^{+}(q^{2}) - f_{BP}^{0}(q^{2}) \right) \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}} q^{\mu}$$

$$\langle P(p) | \bar{q} \sigma^{\mu\nu} q_{\nu} b | B(p+q) \rangle = \frac{i f_{BP}^{T}(q^{2})}{m_{B} + m_{P}} \left[2q^{2}p^{\mu} + \left(q^{2} - \left(m_{B}^{2} - m_{P}^{2} \right) \right) q^{\mu} \right]$$

Nonlocal effects via correlation functions

$$\begin{aligned} \mathcal{H}_{BP,\,\mu}^{(p)} &= i \int d^4 x \, e^{iqx} \langle P(p) | \mathrm{T} \bigg\{ j_{\mu}^{\mathrm{em}}(x), \left[C_1 \mathcal{O}_1^p(0) + C_2 \mathcal{O}_2^p(0) \right. \\ &+ \sum_{k=3-6,8g} C_k \mathcal{O}_k(0) \bigg] \bigg\} | B(p+q) \rangle &= \left[(p \cdot q) q_{\mu} - q^2 p_{\mu} \right] \mathcal{H}_{BP}^{(p)}(q^2) \end{aligned}$$

Aleksey Rusov

Amplitude

$$\begin{aligned} \mathcal{A}(B \to P\ell^{+}\ell^{-}) &= \frac{G_{F}}{\sqrt{2}} \frac{\alpha_{\rm em}}{\pi} \lambda_{t}^{(q)} f_{BP}^{+}(q^{2}) \left[\left(\bar{\ell} \gamma^{\mu} \ell \right) p_{\mu} \left(C_{9} + \frac{2(m_{b} + m_{q})}{m_{B} + m_{P}} C_{7}^{\rm eff} \frac{f_{BP}^{T}(q^{2})}{f_{BP}^{+}(q^{2})} \right) \\ &+ \left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell \right) p_{\mu} C_{10} - \left(\bar{\ell} \gamma^{\mu} \ell \right) p_{\mu} \frac{16\pi^{2}}{f_{BP}^{+}(q^{2})} \left(\frac{\lambda_{u}^{(q)}}{\lambda_{t}^{(q)}} \mathcal{H}_{BP}^{(u)}(q^{2}) + \frac{\lambda_{c}^{(q)}}{\lambda_{t}^{(q)}} \mathcal{H}_{BP}^{(c)}(q^{2}) \right) \right] \end{aligned}$$

- Wilson coefficients at NLO [C. Bobeth, M. Misiak, and J. Urban (2000)]
- Form factors from LCSR [A. Khodjamirian, A.V. Rusov (2017)]
- Nonlocal hadronic amplitudes via QCDF, LCSR and hadronic dispersion relations
 - * $\mathcal{H}_{BK}^{(c)}(q^2)$ [A. Khodjamirian, Th. Mannel, Y.M. Wang (2013)] * $\mathcal{H}_{B\pi}^{(u)}(q^2)$ and $\mathcal{H}_{B\pi}^{(c)}(q^2)$ [Ch. Hambrock, A. Khodjamirian, A.V. Rusov (2015)]

Aleksey Rusov

Calculation of $\mathcal{H}^{(u,c)}_{BP}(q^2)$ at $q^2 < 0$

 LO, factorizable loop and weak annihilation [M. Beneke, Th. Feldmann, D. Seidel (2001)]

■ NLO, factorizable

[H.H.Asatryan, H.M. Asatrian, C. Greub, M. Walker (2002); H.M.Asatrian, K. Bieri, C. Greub, M. Walker (2004)]

Aleksey Rusov

Calculation of $\mathcal{H}^{(u,c)}_{BP}(q^2)$ at $q^2 < 0$

NLO, nonfactorizable (hard gluons)

[M. Beneke, Th. Feldmann, D. Seidel (2001)]

Soft gluons, nonfactorizable
 [A. Khodjamirian, Th. Mannel, A.A. Pivovarov, Y.-M. Wang (2010)]
 [A. Khodjamirian, Th. Mannel, Y.-M. Wang (2013)]

Aleksey Rusov

Dispersion relations for $\mathcal{H}_{BP}^{(u,c)}(q^2)$

Dispersion relations (analytic continuation of $\mathcal{H}_{BP}^{(u,c)}(q^2)$ to $q^2 > 0$):

$$\begin{aligned} \mathcal{H}_{BP}^{(u,c)}(q^2) &= (q^2 - q_0^2) \Bigg[\sum_{V = \rho, \omega, J/\psi, \psi(2S)} \frac{k_V f_V A_{BVP}^{u,c}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{\text{tot}})} \\ &+ \int_{s_0^{u,c}}^{\infty} ds \frac{\rho_{BP}^{(u,c)}(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \Bigg] + \mathcal{H}_{BP}^{(u,c)}(q_0^2) \end{aligned}$$

- $A_{BVP}^{u,c} = |A_{BVP}^{u,c}|e^{i\delta_{BVP}^{u,c}}$ ■ $|A_{BVP}^{u,c}|$ are extracted from nonleptonic $B \to VP$ decays ■ $\delta_{BVP}^{u,c}$ are extracted from the fit of the dispersion relation to $\mathcal{H}_{BP}^{(u,c)}(q^2)$ for $q^2 < 0$ = For $e^{(u,c)}(q)$ are oralize much bedren duality.
- For $\rho_{BP}^{(u,c)}(s)$ one applies quark-hadron duality

Aleksey Rusov

Results for $\mathcal{H}_{BK}^{(c)}, \mathcal{H}_{B\pi}^{(u)}, \mathcal{H}_{B\pi}^{(c)}$

Aleksey Rusov	Siegen
CKM parameters from the observables in $B o (\pi, {\cal K}) \ell^+ \ell^-$ decays	8 / 17

Form factors from LCSR

Starting objects – correlation functions:

$$\begin{split} F_{BP}^{\mu}(p,q) &= i \int d^{4}x \, e^{iqx} \langle P(p) | \, T\{\bar{q}(x)\Gamma^{\mu}b(x), m_{b}\bar{b}(0)i\gamma_{5}u(0)\} | 0 \rangle \\ &= \begin{cases} F_{BP}(q^{2},(p+q)^{2})p^{\mu} + \tilde{F}_{BP}(q^{2},(p+q)^{2})q^{\mu}, & \Gamma^{\mu} = \gamma^{\mu} \\ F_{BP}^{T}(q^{2},(p+q)^{2}) \left[q^{2}p^{\mu} - (q \cdot p)q^{\mu}\right], & \Gamma^{\mu} = -i\sigma^{\mu\nu}q_{\nu} \end{split}$$

Region of light-cone dominance $(x^2 \sim 0)$: $q^2 \ll m_b^2$, $(p+q)^2 \ll m_b^2$

_			_	
~	I ^	1000		11001
~		NSE 1	/ 1/	usuv

LCSR: a general scheme

Transform the OPE result to the dispersion form (in $(p+q)^2$ variable):

$$F_{BP}^{(T)(\text{OPE})}(q^2, (p+q)^2) = \frac{1}{\pi} \int_{m_b^2}^{\infty} ds \frac{\text{Im}F_{BP}^{(T)(\text{OPE})}(q^2, s)}{s - (p+q)^2}$$

- Matching to the hadronic dispersion relation (isolating B-meson state)
- Applying the quark hadron duality
- Applying the Borel transform
- Finally

$$f_{BP}^{+}(q^{2}) = \frac{e^{m_{B}^{2}/M^{2}}}{2m_{B}^{2}f_{B}} \frac{1}{\pi} \int_{m_{B}^{2}}^{s_{0}^{B}} ds \, \mathrm{Im}F_{BP}^{(\mathrm{OPE})}(q^{2},s)e^{-s/M^{2}}$$

$$f_{BP}^{T}(q^{2}) = \frac{(m_{B}+m_{P})e^{m_{B}^{2}/M^{2}}}{2m_{B}^{2}f_{B}} \frac{1}{\pi} \int_{m_{B}^{2}}^{s_{0}^{B}} ds \, \mathrm{Im}F_{BP}^{T(\mathrm{OPE})}(q^{2},s)e^{-s/M^{2}}$$

Aleksey Rusov

Factorizable twist-5 and twist-6 contributions

In the framework of the factorization approximation

$$[F_{BP}(q^2)]_{\mathrm{tw5,6}} \sim \langle \bar{q}q \rangle \left(T_0^{(5)} \otimes \varphi_P^{(2)} + T_0^{(6)} \otimes \varphi_P^{(3)}
ight)$$

■ Calculation reveals [A.V. Rusov (2017)]

 $[f_{BP}^+(0)]_{\mathrm{tw5,6}}/f_{BP}^+(0) < 0.1\%$

 \blacksquare \Rightarrow Truncation up to twist-4 contributions is reliable

Aleksey Rusov

$B \rightarrow P$ form factors from LCSR: results

LCSR vs Lattice QCD

Aleksey Rusov	Siegen
CKM parameters from the observables in $B o (\pi, {\cal K}) \ell^+ \ell^-$ decays	12 / 17

Observables in $B \rightarrow P \ell^+ \ell^-$ decays

 q^2 -binned branching fraction

$$\mathcal{B}(\bar{B} \to P\ell^+\ell^-[q_1^2, q_2^2]) = \frac{G_F^2 \alpha_{\rm em}^2 |\lambda_t^{(q)}|^2}{192\pi^5} \left\{ \mathcal{F}_{BP}[q_1^2, q_2^2] + \kappa_q^2 \mathcal{D}_{BP}[q_1^2, q_2^2] \right. \\ \left. + 2\kappa_q \left(\cos\xi_q \, \mathcal{C}_{BP}[q_1^2, q_2^2] - \sin\xi_q \, \mathcal{S}_{BP}[q_1^2, q_2^2] \right) \right\} \tau_B$$

q²-binned direct *CP*-asymmetry

$$\mathcal{A}_{BP}[q_1^2, q_2^2] = \frac{\mathcal{B}(\bar{B} \to P\ell^+\ell^-[q_1^2, q_2^2]) - \mathcal{B}(B \to \bar{P}\ell^+\ell^-[q_1^2, q_2^2])}{\mathcal{B}(\bar{B} \to P\ell^+\ell^-[q_1^2, q_2^2]) + \mathcal{B}(B \to \bar{P}\ell^+\ell^-[q_1^2, q_2^2])} \\ = \frac{-2\kappa_q \sin\xi_q \, \mathcal{S}_{BP}[q_1^2, q_2^2]}{\mathcal{F}_{BP}[q_1^2, q_2^2] + \kappa_q^2 \, \mathcal{D}_{BP}[q_1^2, q_2^2] + 2\kappa_q \cos\xi_q \, \mathcal{C}_{BP}[q_1^2, q_2^2]}$$

$$\frac{\lambda_u^{(q)}}{\lambda_t^{(q)}} = \frac{V_{ub}V_{uq}^*}{V_{tb}V_{tq}^*} \equiv \kappa_q \, e^{i\xi_q}, \ q = d, s$$

Aleksey Rusov

Binned parts of the decay width

$$\mathcal{F}_{BP}[q_{1}^{2}, q_{2}^{2}] = \frac{1}{q_{2}^{2} - q_{1}^{2}} \int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} p_{BP}^{3} |f_{BP}^{+}(q^{2})|^{2} \left(\left| c_{BP}(q^{2}) \right|^{2} + |C_{10}|^{2} \right) \right)$$

$$\mathcal{D}_{BP}[q_{1}^{2}, q_{2}^{2}] = \frac{1}{q_{2}^{2} - q_{1}^{2}} \int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} p_{BP}^{3} \left| h_{BP}(q^{2}) \right|^{2}$$

$$\begin{pmatrix} C_{BP}[q_{1}^{2}, q_{2}^{2}] \\ S_{BP}[q_{1}^{2}, q_{2}^{2}] \end{pmatrix} = \frac{1}{q_{2}^{2} - q_{1}^{2}} \int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} p_{BP}^{3} \left| f_{BP}^{+}(q^{2}) c_{BP}(q^{2}) h_{BP}(q^{2}) \right| \begin{pmatrix} \cos \delta_{BP}(q^{2}) \\ \sin \delta_{BP}(q^{2}) \end{pmatrix}$$

$$c_{BP}(q^{2}) = C_{9} + \frac{2(m_{b} + m_{q})}{m_{B} + m_{P}} C_{7}^{\text{eff}} \frac{f_{BP}^{T}(q^{2})}{f_{BP}^{+}(q^{2})} + 16\pi^{2} \frac{\mathcal{H}_{BP}^{(c)}(q^{2})}{f_{BP}^{+}(q^{2})}$$

$$a_{BP}(q^{2}) = 16\pi^{2} \left(\mathcal{H}_{BP}^{(c)}(q^{2}) - \mathcal{H}_{BP}^{(u)}(q^{2}) \right), \quad \delta_{BP}(q^{2}) = \operatorname{Arg}(h_{BP}(q^{2})) - \operatorname{Arg}(c_{BP}(q^{2}))$$

Aleksey Rusov

Ratio $|V_{td}/V_{ts}|$

Without nonlocal hadronic amplitudes

$$\frac{\mathcal{B}(\bar{B} \to \pi \ell^+ \ell^-[q_1^2, q_2^2])}{\mathcal{B}(\bar{B} \to K \ell^+ \ell^-[q_1^2, q_2^2])} = \left|\frac{\mathbf{V}_{td}}{\mathbf{V}_{ts}}\right|^2 \frac{\mathcal{F}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{BK}[q_1^2, q_2^2]}$$

Aleksey Rusov	
CKM parameters from the observables in $B ightarrow (\pi, K) \ell^+ \ell^-$ d	ecays

Ratio $|V_{td}/V_{ts}|$

Without nonlocal hadronic amplitudes

$$\frac{\mathcal{B}(\bar{B} \to \pi \ell^+ \ell^-[q_1^2, q_2^2])}{\mathcal{B}(\bar{B} \to K \ell^+ \ell^-[q_1^2, q_2^2])} = \left|\frac{\mathbf{V}_{td}}{\mathbf{V}_{ts}}\right|^2 \frac{\mathcal{F}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{BK}[q_1^2, q_2^2]}$$

• Including nonlocal effects $(\lambda_u^{(s)} \text{ neglected})$

$$\begin{aligned} \frac{\mathcal{B}(\bar{B} \to \pi \ell^+ \ell^-[q_1^2, q_2^2])}{\mathcal{B}(\bar{B} \to K \ell^+ \ell^-[q_1^2, q_2^2])} &= \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{\mathcal{F}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{B\kappa}[q_1^2, q_2^2]} \begin{cases} 1 + \kappa_d^2 \frac{\mathcal{D}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{B\pi}[q_1^2, q_2^2]} \\ + 2\kappa_d \left(\cos\xi_d \frac{\mathcal{C}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{B\pi}[q_1^2, q_2^2]} - \sin\xi_d \frac{\mathcal{S}_{B\pi}[q_1^2, q_2^2]}{\mathcal{F}_{B\pi}[q_1^2, q_2^2]} \right) \end{cases} \\ \kappa_d \ e^{i\xi_d} = \frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*} \end{aligned}$$

Aleksey Rusov

Switch to Wolfenstein parameters A, λ, ρ, η

Aleksey Rusov	Siegen
CKM parameters from the observables in ${\cal B} o (\pi,{\cal K}) \ell^+ \ell^-$ decays	16 / 17

- Switch to Wolfenstein parameters A, λ, ρ, η
- $\lambda = 0.22506 \pm 0.00050$ is fixed from the global CKM fit

Aleksey Rusov	Siegen
CKM parameters from the observables in $B o (\pi, {\cal K}) \ell^+ \ell^-$ decays	16 / 17

- Switch to Wolfenstein parameters A, λ, ρ, η
- $\lambda = 0.22506 \pm 0.00050$ is fixed from the global CKM fit

•
$$A = \frac{(192\pi^5)^{1/2}}{G_F \alpha_{em} \lambda^2} \left(\frac{1}{\mathcal{F}_{BK}[q_1^2, q_2^2]} \right)^{1/2} \left(\frac{\mathcal{B}_{BK}[q_1^2, q_2^2]}{\tau_B} \right)^{1/2}$$

Aleksey Rusov	Siegen
CKM parameters from the observables in ${\cal B} o (\pi,{\cal K}) \ell^+ \ell^-$ decays	16 / 17

- Switch to Wolfenstein parameters A, λ, ρ, η
- $\lambda = 0.22506 \pm 0.00050$ is fixed from the global CKM fit

$$\mathbf{A} = \frac{(192\pi^5)^{1/2}}{G_F \alpha_{em} \lambda^2} \left(\frac{1}{\mathcal{F}_{B\kappa}[q_1^2, q_2^2]} \right)^{1/2} \left(\frac{\mathcal{B}_{B\kappa}[q_1^2, q_2^2]}{\tau_B} \right)^{1/2}$$
$$\eta = \frac{1}{2\lambda^2(1-\lambda^2/2)} \left(\frac{\mathcal{F}_{B\kappa}[q_1^2, q_2^2]}{\mathcal{S}_{B\pi}[q_1^2, q_2^2]} \right) \left(\mathcal{A}_{B\pi}[q_1^2, q_2^2] \frac{\mathcal{B}_{B\pi}[q_1^2, q_2^2]}{\mathcal{B}_{B\kappa}[q_1^2, q_2^2]} \right)^{1/2}$$

Aleksey Rusov	
CKM parameters from the observables in $B \to (\pi, K) \ell^+ \ell^-$ decays	

- Switch to Wolfenstein parameters A, λ, ρ, η
- $\lambda = 0.22506 \pm 0.00050$ is fixed from the global CKM fit

$$A = \frac{(192\pi^5)^{1/2}}{G_F \alpha_{em} \lambda^2} \left(\frac{1}{\mathcal{F}_{BK}[q_1^2, q_2^2]} \right)^{1/2} \left(\frac{\mathcal{B}_{BK}[q_1^2, q_2^2]}{\tau_B} \right)^{1/2}$$
$$= \eta = \frac{1}{2\lambda^2(1 - \lambda^2/2)} \left(\frac{\mathcal{F}_{BK}[q_1^2, q_2^2]}{\mathcal{S}_{B\pi}[q_1^2, q_2^2]} \right) \left(\mathcal{A}_{B\pi}[q_1^2, q_2^2] \frac{\mathcal{B}_{B\pi}[q_1^2, q_2^2]}{\mathcal{B}_{BK}[q_1^2, q_2^2]} \right)$$
$$= \frac{\mathcal{B}_{B\pi}[q_1^2, q_2^2]}{\mathcal{B}_{BK}[q_1^2, q_2^2]} = \frac{\lambda^2}{\mathcal{F}_{BK}[q_1^2, q_2^2]} \left(\left[(1 - \rho)^2 + \eta^2 \right] \mathcal{F}_{B\pi}[q_1^2, q_2^2] \right] + \frac{\left[\rho(1 - \rho) - \eta^2 \right]^2 + \eta^2}{(1 - \rho)^2 + \eta^2} \left(1 - \frac{\lambda^2}{2} \right)^2 \mathcal{D}_{B\pi}[q_1^2, q_2^2] + 2 \left[\rho(1 - \rho) - \eta^2 \right] \left(1 - \frac{\lambda^2}{2} \right) \mathcal{C}_{B\pi}[q_1^2, q_2^2] \right)$$

Aleksey Rusov

- Switch to Wolfenstein parameters A, λ, ρ, η
- $\lambda = 0.22506 \pm 0.00050$ is fixed from the global CKM fit

$$A = \frac{(192\pi^5)^{1/2}}{G_F \alpha_{em} \lambda^2} \left(\frac{1}{\mathcal{F}_{BK}[q_1^2, q_2^2]} \right)^{1/2} \left(\frac{\mathcal{B}_{BK}[q_1^2, q_2^2]}{\tau_B} \right)^{1/2}$$
$$= \eta = \frac{1}{2\lambda^2(1 - \lambda^2/2)} \left(\frac{\mathcal{F}_{BK}[q_1^2, q_2^2]}{\mathcal{S}_{B\pi}[q_1^2, q_2^2]} \right) \left(\mathcal{A}_{B\pi}[q_1^2, q_2^2] \frac{\mathcal{B}_{B\pi}[q_1^2, q_2^2]}{\mathcal{B}_{BK}[q_1^2, q_2^2]} \right)$$
$$= \frac{\mathcal{B}_{B\pi}[q_1^2, q_2^2]}{\mathcal{B}_{BK}[q_1^2, q_2^2]} = \frac{\lambda^2}{\mathcal{F}_{BK}[q_1^2, q_2^2]} \left(\left[(1 - \rho)^2 + \eta^2 \right] \mathcal{F}_{B\pi}[q_1^2, q_2^2] \right] + \frac{\left[\rho(1 - \rho) - \eta^2 \right]^2 + \eta^2}{(1 - \rho)^2 + \eta^2} \left(1 - \frac{\lambda^2}{2} \right)^2 \mathcal{D}_{B\pi}[q_1^2, q_2^2] + 2 \left[\rho(1 - \rho) - \eta^2 \right] \left(1 - \frac{\lambda^2}{2} \right) \mathcal{C}_{B\pi}[q_1^2, q_2^2] \right)$$

There are yet no experimental data on $\mathcal{A}_{B\pi}[q_1^2,q_2^2]$

Aleksey Rusov

Conclusion

- Nonlocal effects induce non-trivial dependence of B → (π, K)ℓ⁺ℓ⁻ decays on CKM matrix elements
- The relevant hadronic input has been determined
- The new way of determination of the Wofenstein parameters from the observables in $B \to (\pi, K) \ell^+ \ell^-$ decays is suggested
- More experimental data is desired

Aleksey Rusov				
CKM parameters from	the observables in	$B \rightarrow (\pi,$	$K)\ell^+\ell^-$	decays

Operators basis

$$\begin{split} \mathcal{O}_{9} &= \frac{\alpha_{em}}{4\pi} \left(\bar{d}_{L} \gamma^{\mu} b_{L} \right) \left(\bar{\ell} \gamma_{\mu} \ell \right) , \quad \mathcal{O}_{10} = \frac{\alpha_{em}}{4\pi} \left(\bar{d}_{L} \gamma^{\mu} b_{L} \right) \left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell \right) , \\ \mathcal{O}_{7\gamma} &= -\frac{e \, m_{b}}{16\pi^{2}} \left(\bar{d}_{L} \sigma^{\mu\nu} b_{R} \right) F_{\mu\nu} , \\ \mathcal{O}_{1}^{\mu} &= \left(\bar{d}_{L} \gamma_{\mu} u_{L} \right) \left(\bar{u}_{L} \gamma^{\mu} b_{L} \right) , \quad \mathcal{O}_{2}^{\mu} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} u_{L}^{j} \right) \left(\bar{u}_{L}^{j} \gamma^{\mu} b_{L}^{i} \right) , \\ \mathcal{O}_{1}^{c} &= \left(\bar{d}_{L} \gamma_{\mu} c_{L} \right) \left(\bar{c}_{L} \gamma^{\mu} b_{L} \right) , \quad \mathcal{O}_{2}^{c} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} c_{L}^{j} \right) \left(\bar{c}_{L}^{j} \gamma^{\mu} b_{L}^{i} \right) , \\ \mathcal{O}_{3} &= \left(\bar{d}_{L} \gamma_{\mu} b_{L} \right) \sum_{q} \left(\bar{q}_{L} \gamma^{\mu} q_{L} \right) , \quad \mathcal{O}_{4} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} b_{L}^{j} \right) \sum_{q} \left(\bar{q}_{L}^{j} \gamma^{\mu} q_{L}^{i} \right) , \\ \mathcal{O}_{5} &= \left(\bar{d}_{L} \gamma_{\mu} b_{L} \right) \sum_{q} \left(\bar{q}_{R} \gamma^{\mu} q_{R} \right) , \quad \mathcal{O}_{6} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} b_{L}^{j} \right) \sum_{q} \left(\bar{q}_{R}^{j} \gamma^{\mu} q_{R}^{i} \right) , \\ \mathcal{O}_{8g} &= - \frac{g_{s} m_{b}}{16\pi^{2}} \left(\bar{d}_{L}^{i} \sigma_{\mu\nu} (T^{a})^{ij} b_{R}^{j} \right) G^{a \, \mu\nu} \end{split}$$

Aleksey Rusov

$B \rightarrow P$ form factors: z-expansion (BCL parametrization)

$$f_{BP}^{+,T}(q^2) = \frac{f_{BP}^{+,T}(0)}{1 - q^2/m_{B_{(s)}^*}^2} \left\{ 1 + b_{1,BP}^{+,T} \left[z(q^2) - z(0) + \frac{1}{2} \left(z(q^2)^2 - z(0)^2 \right) \right] \right\}$$

 $z(q^{2}) = \frac{\sqrt{(m_{B} + m_{P})^{2} - q^{2}} - \sqrt{(m_{B} + m_{P})^{2} - t_{0}}}{\sqrt{(m_{B} + m_{P})^{2} - q^{2}} + \sqrt{(m_{B} + m_{P})^{2} - t_{0}}}, \quad t_{0} = (m_{B} + m_{P})(\sqrt{m_{B}} - \sqrt{m_{P}})^{2}$

Transition	$f^{+}_{BP}(0)$	$b^+_{1(BP)}$	Correlation
$B_s o K$	0.336 ± 0.023	-2.53 ± 1.17	0.79
B ightarrow K	0.395 ± 0.033	-1.42 ± 1.52	0.72
$B ightarrow \pi$	0.301 ± 0.023	-1.72 ± 1.14	0.74
Transition	$f_{BP}^{T}(0)$	<i>b</i> ^{<i>T</i>} _{1 (<i>BP</i>)}	Correlation
$\begin{array}{c} Transition \\ B_s \to K \end{array}$	$f_{BP}^{T}(0)$ 0.320 ± 0.019	$b_{1(BP)}^{T} \ -1.08 \pm 1.53$	Correlation 0.74
$ \begin{array}{c} Transition \\ B_s \to K \\ B \to K \end{array} $	$f_{BP}^{T}(0)$ 0.320 ± 0.019 0.381 ± 0.027	$\begin{array}{c} b_{1(BP)}^{T} \\ -1.08 \pm 1.53 \\ -0.87 \pm 1.72 \end{array}$	Correlation 0.74 0.75

Aleksey Rusov

Numerical results on observables

Binned parts of the decay width

Decay mode	$\mathcal{F}_{BP}[\text{GeV}^3]$	$\mathcal{D}_{BP}[\mathrm{GeV}^3]$	$\mathcal{C}_{BP}[\mathrm{GeV}^3]$	$\mathcal{S}_{BP}[\text{GeV}^3]$
$B^- ightarrow K^- \ell^+ \ell^-$	$75.0^{+10.5}_{-9.7}$	—	—	—
$B^- o \pi^- \ell^+ \ell^-$	$47.7^{+6.4}_{-5.9}$	$16.1^{+2.8}_{-10.1}$	$14.3^{+7.8}_{-5.8}$	$-9.8^{+7.1}_{-7.2}$
$ar{B}_s o K^0 \ell^+ \ell^-$	$61.0^{+7.0}_{-6.8}$	$7.8^{+3.4}_{-2.5}$	$-12.9^{+2.4}_{-2.2}$	$-3.4^{+1.1}_{-2.6}$

Our predictions (CKM matrix elements taken from global fit)

Process	$\mathcal{B}_{BP}[\text{GeV}^{-2}] imes 10^{-8}$	\mathcal{A}_{BP}
$B^- ightarrow K^- \ell^+ \ell^-$	$4.38^{+0.62}_{-0.57}\pm0.28$	0
$B^- ightarrow \pi^- \ell^+ \ell^-$	$0.131^{+0.023}_{-0.022}\pm0.010$	$-0.15\substack{+0.11\\-0.11}$
$ar{B}_s o K^0 \ell^+ \ell^-$	$0.154^{+0.018}_{-0.017}\pm0.011$	$-0.04\substack{+0.01\\-0.03}$

$$[q_1^2, q_2^2] = [1.0, 6.0] \,\mathrm{GeV}^2$$

Aleksey Rusov

Decay mode	$B^- ightarrow K^- \ell^+ \ell^-$	$B^- ightarrow \pi^- \ell^+ \ell^-$	$ar{B}_{s} ightarrow K^{0} \ell^{+} \ell^{-}$	
Measurement or calculation	$\mathcal{B}_{BK}[1.0, 6.0]$	$\mathcal{B}_{B\pi}[1.0,6.0]$	$\mathcal{B}_{B_{\boldsymbol{s}}\boldsymbol{\kappa}}[1.0, 6.0]$	
Belle	$2.72^{+0.46}_{-0.42}\pm0.16$			
CDF	$2.58 \pm 0.36 \pm 0.16$	—	—	
BaBar	$2.72^{+0.54}_{-0.48}\pm0.06$	—	_	
LHCb	$2.42 \pm 0.07 \pm 0.12$	$0.091^{+0.021}_{-0.020}\pm0.003$	_	
HPQCD	3.62 ± 1.22	—	_	
Fermilab/MILC	3.49 ± 0.62	0.096 ± 0.013 —		
This work	$4.38^{+0.62}_{-0.57}\pm0.28$	$0.131^{+0.023}_{-0.022}\pm0.010$	$0.154^{+0.018}_{-0.017}\pm0.011$	

In the units of $10^{-8}\ \mbox{GeV}^{-2}$

110	LCON		1160	
	NDCN	/ 1/		· · ·

- LHCb 2015 (exp. data on $B^+ \to (K^+, \pi^+) \mu^+ \mu^-$) $|V_{td}/V_{ts}| = 0.24^{+0.05}_{-0.04}$
- Fermilab Lattice and MILC (using Lattice $B \rightarrow P$ form factors):

 $|V_{td}/V_{ts}|_{\text{low}-q^2} = 0.25 \pm 0.04, |V_{td}/V_{ts}|_{\text{high}-q^2} = 0.19 \pm 0.02$

 $|V_{td}/V_{ts}| = 0.20 \pm 0.02$

• PDG 2016 (from the mixing of $B^0_d \leftrightarrow \overline{B}^0_d$ and $B^0_s \leftrightarrow \overline{B}^0_s$):

 $|V_{td}/V_{ts}| = 0.215 \pm 0.011$

Aleksey Rusov