The Dark side of Flavor

Emidio Gabrielli

University and INFN Trieste, Italy NICPB, Tallinn, Estonia

in collaboration with: Marco Fabbrichesi, Luca Marzola, Barbara Mele, Martti Raidal, Elena Venturini

based on:

 PRL 119 (2017) 031801
 M. Fabbrichesi, EG, B.Mele

 PRD 95 (2017) 035005
 EG, M.Raidal, L.Marzola

 PRD 94 (2016) 115013
 EG, B.Mele, M.Raidal, E.Venturini

 PRD 89 (2014) 015008
 EG, M.Raidal

LIO International Conference on Flavour Physics: "From Flavour to New Physics"

18-20 avril 2018 Lyon, IPNL

Outline

- Flavor model: theoretical framework
 - Yukawa couplings as effective couplings
 - generated by a Dark Sector
 - solution to the flavor hierarchy problem
- Phenomenological implications
- New FCNC signatures
- Conclusions

Flavor Hierarchy Problem

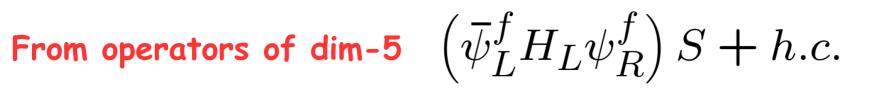
- Large hierarchy in SM fermion masses suggest
- Yukawa's arise as low energy effective couplings
- easier to justify the large hierarchy
- First attempt → Froggat-Nielsen mechanism
- require ad-hoc high dim operators \rightarrow origin unknown
- A new proposal: effective Yukawa couplings generated by a renormalizable theory → require a Dark Sector

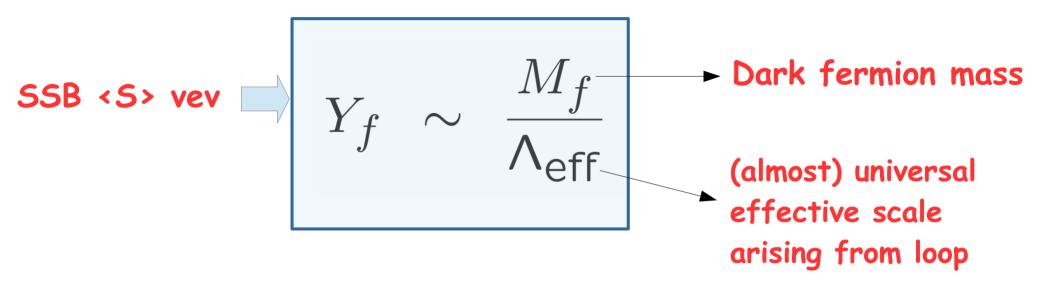
Effective Yukawa: Theoretical framework

Main paradigm: 4-dim Yukawa operators (Ys)^{E. Ma, PRL 112 (2014)} forbidden by some symmetry Σ but can arise from operators of dim-5

- Assume existence of a Dark sector, with Dark-Fermions
- generate dark-chiral symmetry breaking non-perturbatively so that DF mass hierarchies exist
- Transfer DF mass hierarchy to SM using appropriate messenger sector (via renormalizable interact.)
- Effective Ys arise at 1-loop after SSB of Σ

EG, Raidal, PRD 89 (2014)





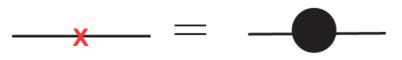
for each SM fermion there exists a massive Dark-fermion in the Dark sector (~ rescaled SM fermion spectrum)

Non-perturbative dynamics in Dark sector responsible of of generating M_f hierarchy (see next slides)

Dark-Fermions mass hierarchy

- Large hierarchy of Yukawa's suggests some non-perturbative, exponential mechanism for dark-fermion masses M_f
- Possible realization: via Nambu & Jona-Lasinio (NJL) mechanism
- dynamical mass "m" arises as a non-trivial solution of the self-consistent mass gap equation r self-energy

$$m = \Sigma(\hat{p}, m)|_{\hat{p}=m}$$



perturbative solution m=0 always there true ground state corresponds to non-trivial solution $m\neq 0$.

Lee-Wick mechanism for ChSB

Toy model: massless fermions charged under U(1) gauge + the Lee-Wick term in the gauge sector Lee-Wick, PRD 2 (1970) 1033; NPB 9 (1969) 209.

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{\Lambda^2} \left(\partial^{\alpha} F_{\alpha\mu}\right) \left(\partial^{\beta} F^{\mu}_{\beta}\right) + i \bar{\psi} \gamma_{\mu} D^{\mu} \psi$$

$$D_{\mu} = \partial_{\mu} + igA_{\mu} \qquad \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

spin-1 ghost in the spectrum with mass ~ Λ

ChSB induced by U(1) Lee-Wick term

fermion mass generated non-perturbatively

EG, PRD 77 (2008) 055020

Non-trivial solution obtained using the NJL approach

Dynamical fermion mass hierarchy

N fermions coupled to U(1) + Lee-Wick term

Mass-gap solution

$$M_f = \Lambda \exp\left\{-\frac{2\pi^2}{3\alpha(\Lambda)q_f^2} + \frac{1}{4}\right\}$$

Lee-Wick, PRD 2 (1970) 1033; NPB 9 (1969) 209.

EG, PRD 77 (2008) EG, Raidal, PRD 89 (2014)

valid for weak coupling regime $\alpha < < 1$

 $\Lambda \rightarrow$ Lee-Wick ghost mass

•non-universal U(1) charges \rightarrow exponential mass spread

Masses $M_f \qquad \bigvee U(1)$ charges q_f

• other mechanism based on Miransky scaling: U(1) @ strong coupling \rightarrow requires criticality ($\alpha > \alpha_c = \pi/3$)

$$\Lambda_c$$
 energy scale where U(1) becomes strong

$$m_{\psi} \approx 4\Lambda_c e^{-\frac{\pi\alpha_c}{\sqrt{\alpha - \alpha_c}}}$$

Emidio Gabrielli

8

embed this idea into effective Yukawa \rightarrow

Yukawa hierarchy EG, Raidal, PRD 89 (2014)

requires exact U(1) gauge symmetry in Dark sector
 Dark fermions charged under U(1) in dark sector

$$Y_f \sim M_f \sim \exp\left\{-\frac{\gamma}{\alpha q_f^2}\right\}$$

 α U(1) fine-structure c. q_f U(1) quantum charges $\gamma \sim$ anomalous dimension

Yukawa's hierarchy related to U(1) charges

A good matching of observed spectrum for charges O(1) $q_{E_3} = 1$ $\bar{\alpha}(\Lambda) = 0.14, q_{U_3} = 1 \text{ and } q_{D_3} = 0.9.$ N_3 N_2 N_1 E_2 E_1 ψ : U_2 D_2 U_1 D_1 ψ : 0.920.810.650.590.55 q_{ψ} 0.88 0.82 0.770.76 q_{ψ}

 $m_{N_1} = 1$ eV, $m_{N_2} = 10^{-3}$ eV, and $m_{N_3} = 10^{-6}$ eV

$$\begin{array}{c} \textbf{Enforced by LR gauge symmetry} \\ \texttt{g}_{L}\texttt{=} \texttt{g}_{R}\texttt{=}\texttt{g} \end{array} \begin{array}{c} SU(2)_{L} \times SU(2)_{R} \times U(1)_{Y} \\ \texttt{I}_{L} \\ H_{L} \\ H_{R} \end{array} \begin{array}{c} \texttt{SU}(2) \texttt{U}(2)_{R} \times SU(2)_{R} \times U(1)_{Y} \end{array} \end{array}$$

dim-4 Yukawa operator forbidden

NO Higgs bi-doublets (to avoid dim-4 Yukawa operators)

Iowest dim (gauge-invariant) operator (dim-5)

$$\frac{1}{\Lambda_{\rm eff}} \left(\bar{\psi}_L^f H_L \right) \left(H_R^\dagger \psi_R^f \right) + h.c$$

Yukawa's generated after SSB of SU(2)_R

Strong CP problem automatically solved !

Interactions Lagrangian in LR models required to generate Yukawa couplings

$$\mathcal{L}_{MS}^{I} = g_{L} \left(\sum_{i=1}^{N} \left[\bar{q}_{L}^{i} Q_{R}^{U_{i}} \right] \hat{S}_{L}^{U_{i}} + \sum_{i=1}^{N} \left[\bar{q}_{L}^{i} Q_{R}^{D_{i}} \right] \hat{S}_{L}^{D_{i}} \right)$$

$$+ g_{R} \left(\sum_{i=1}^{N} \left[\bar{q}_{R}^{i} Q_{L}^{U_{i}} \right] \hat{S}_{R}^{U_{i}} + \sum_{i=1}^{N} \left[\bar{q}_{R}^{i} Q_{L}^{D_{i}} \right] \hat{S}_{R}^{D_{i}} \right)$$

$$+ \lambda \sum_{i=1}^{N} \left(\tilde{H}_{L}^{\dagger} \hat{S}_{L}^{U_{i}} \hat{S}_{R}^{U_{i}^{\dagger}} \tilde{H}_{R} + H_{L}^{\dagger} \hat{S}_{L}^{D_{i}} \hat{S}_{R}^{D_{i}^{\dagger}} H_{R} \right) + h.c. ,$$

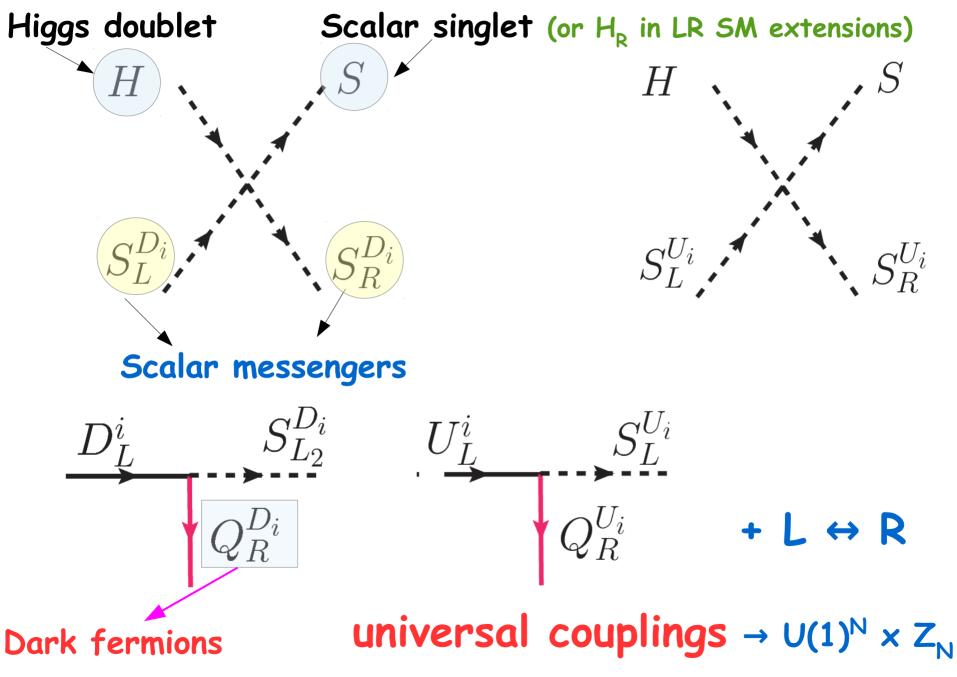
$$+ \lambda \sum_{i=1}^{N} \left(\tilde{H}_{L}^{\dagger} \hat{S}_{L}^{U_{i}} \hat{S}_{R}^{U_{i}^{\dagger}} \tilde{H}_{R} + H_{L}^{\dagger} \hat{S}_{L}^{D_{i}} \hat{S}_{R}^{D_{i}^{\dagger}} H_{R} \right) + h.c. ,$$

$$+ c. ,$$

Emidio Gabrielli

(

Minimal set of new interactions



Higgs Yukawa's radiatively generated at 1-loop $U_L U_B HS$ finite at any order Via higher order dim. operators \rightarrow Yukawa coupling UP quark $S \rightarrow vev of S, or H_R$ H₀ = Higgs field Messenger scalars $Q_R^{U_i}$ $Q_L^{U_i}$ UP-quark U_R^i Q = Dark-Fermions (SM gauge singlets) M_f = mass of Dark-fermion f $Y_f \sim \frac{M_f}{\Lambda_{eff}}$ Yukawas follow M_f hierarchy !

Messenger mass matrix

$$M_S^2 = \left(\begin{array}{cc} m_L^2 & \Delta \\ \Delta & m_R^2 \end{array}\right)$$

$$\Delta = \frac{1}{2}\lambda v_R v_L$$

Assume flavor universal structure

Eigenvalues
$$\rightarrow m_{\pm}^2 = \frac{1}{2} \left(m_L^2 + m_R^2 \pm \left[(m_L^2 + m_R^2)^2 + 4\Delta \right]^{1/2} \right)$$

LR symmetry requires
$$\rightarrow m_L^2 = m_R^2 \equiv \bar{m}^2$$

$$m_{\pm}^2 = \bar{m}^2 \left(1 \pm \xi\right)$$

to avoid tachions and color-charge breaking minima

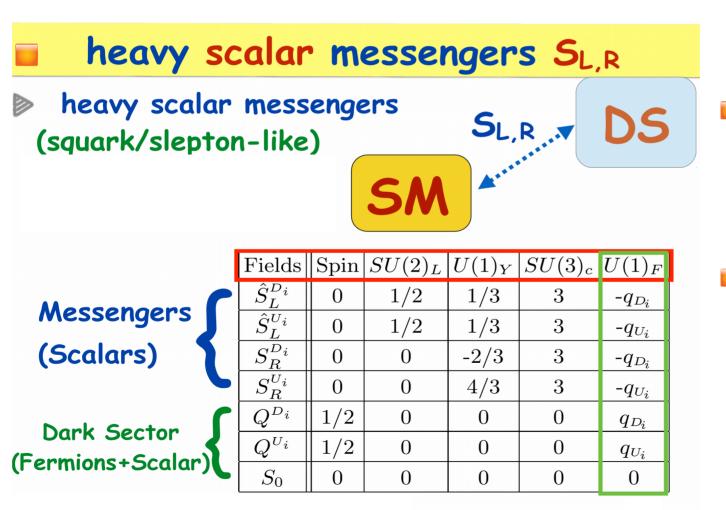
mixing parameter
$$\xi = \frac{\Delta}{\bar{m}^2}$$

 $0 < \xi < 1$

Summary of model's features

Dark fermions stable [due to exact U(1)-dark gauge symmetry]

having long-range interactions mediated by a massless dark photon
 Rescaled spectrum of SM fermions



avoiding stability requires colored messengers to be heavy >> TeV scale

EW messengers could be lighter, below TeV scale Dynamics responsible of dark-fermion masses predicts an unbroken U(1)

A main phenomenological implication

a massless dark-photon in the spectrum

Massless Dark photons

Different from massive Dark photons scenarios

On-shell massless DP can be fully decoupled from SM sector at tree-level B. Holdom, *Phys Lett.* 166 B (1986) 196

Interact with SM fields only via high-dimensional operators suppressed by 1/M^{D-4}

Present bounds on massive DP do not apply (tree-level couplings with SM fields assumed)

Large couplings in Dark sector allowed

Massless Dark Photon signatures

DP discovery channel in Higgs boson physics:

EG, Heikinheimo, Mele, Raidal, PRD 90 (2014) Biswas, EG, Heikinheimo, Mele PRD 93 (2016)

$$H o \gamma ar \gamma$$

 \rightarrow non-decoupling

no results by CMS and ATLAS yet

Decoupling (suppressed by UV scale)

9 new FCNC processes

$$f \to f' \ ar{\gamma}$$
 $_{f=}$

$$t = t, b, c, s, \tau, \mu$$

DP discovery channel in Kaon physics

$$K^+ \to \pi^+ \bar{\pi}^0 \bar{\gamma}$$

EG, Mele, Fabbrichesi, PRL 119 (2017)

New Z boson decay

$$Z\to\gamma\bar\gamma$$

(evading Landau-Yang Th.) EG, Mele, Fabbrichesi, arXiv:1712.05412 To appear on PRL

EG, Mele, Raidal, Venturini, PRD 94 (2016)

FCNC fermion decays into dark photon $f \to f' \, \overline{\gamma}$

CKM matrix origin

in the basis of weak-gauge eigenstates (no CKM mixing $X_{ij} \implies \delta_{ij}$)

$$\tilde{\mathcal{L}}_{MS}^{I} = \left\{ g_{L} \left(\sum_{i,j=1}^{N} \left[\bar{q}_{L}^{i} (X_{L}^{U})_{ij} Q_{R}^{U_{j}} \right] \hat{S}_{L}^{U_{j}} + \sum_{i,j=1}^{N} \left[\bar{q}_{L}^{i} (X_{L}^{D})_{ij} Q_{R}^{D_{j}} \right] \hat{S}_{L}^{D_{j}} \right) \\
+ g_{R} \left(\sum_{i,j=1}^{N} \left[\bar{\upsilon}_{R}^{i} (X_{R}^{U})_{ij} Q_{L}^{U_{j}} \right] S_{R}^{U_{j}} + \sum_{i,j=1}^{N} \left[\bar{\upsilon}_{R}^{i} (X_{L}^{D})_{ij} Q_{L}^{D_{j}} \right] S_{R}^{D_{j}} \right)$$

radiative generation of Yukawa implies

$$Y_{ij}^{U,D} \sim \left(X_L^{U,D \dagger} \cdot \hat{Y}^{U,D} \cdot X_R^{U,D} \right)_{ij}$$

$$\hat{Y}^{U,D} = \mathrm{diag}[Y_1^{U,D},Y_2^{U,D},Y_3^{U,D}]$$

Yukawas can be diagonalized as usual by a bi-unitary transformation

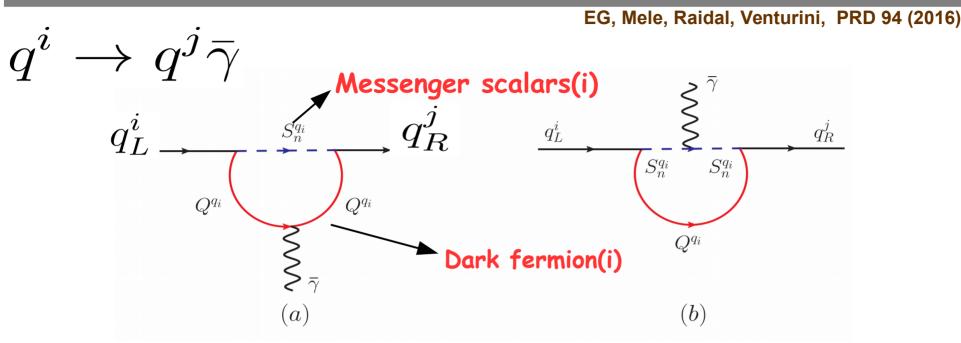
$$\operatorname{diag}[Y^{U,D}] = V_{L,R}^{U,D} \dagger \cdot Y^{U,D} \cdot V_{L,R}^{U,D} \longrightarrow \operatorname{CKM} \operatorname{matrix} K = V_L^U \dagger \cdot V_L^D$$

minimal flavor violation requires $\rightarrow X_{L,R}^{U,D} \sim \mathbf{1} + \Delta_{L,R}^{U,D}$ $|\Delta_{L,R}^{U,D}| \ll 1$ no reason why $X_L^{U,D}$ should be unitary

After rotation to quark-mass eigenstates

$$ho_{L,R},\,\eta_{L,R}$$
 in general matrices

FCNC decays of SM fermions into a Dark Photon



DP coupled to SM fermions by FC magnetic-dipole operators

$$\mathcal{L}_{\text{eff}} = \sum_{q=U,D} \sum_{i,j=1}^{3} \left(\frac{1}{2(\Lambda_{L}^{q})_{ij}} \Big[\bar{q}_{R}^{j}(x) \sigma_{\mu\nu} \bar{F}^{\mu\nu}(x) q_{L}^{i}(x) \Big] + \frac{1}{2(\Lambda_{R}^{q})_{ij}} \Big[\bar{q}_{L}^{j}(x) \sigma_{\mu\nu} \bar{F}^{\mu\nu}(x) q_{R}^{i}(x) \Big] \right)$$

$$\overline{\mathsf{Fuv}} = \mathsf{dark photon field strength}$$

= suppressed by scales $\Lambda_{L,R}$ proportional to typical messenger mass scale

width
$$\Gamma(q^i \to q^j \bar{\gamma}) = \frac{m_{q_i}^3}{16\pi^3} \left(\frac{1}{(\Lambda_L^q)_{ij}^2} + \frac{1}{(\Lambda_R^q)_{ij}^2} \right)$$

Emidio Gabrielli

Decay

Effective scales for UP-quark transitions (exact in ξ,x) neglecting mass of final fermion

$$\begin{aligned} \frac{1}{(\Lambda_{L}^{U})_{ij}} &= \frac{\overline{e} \, m_{U_{i}}}{\overline{m}_{U}^{2}} \left[\overline{e}_{i}^{U} \frac{\rho_{R}^{ji}}{\rho_{R}^{ii}} F_{LR}(x_{i}^{U},\xi_{U}) - \frac{g_{R}^{2}}{16\pi^{2}} \sum_{k=1}^{3} \overline{e}_{k}^{U} \rho_{R}^{jk} \rho_{R}^{ki} F_{RR}(x_{k}^{U},\xi_{U}) \right] \\ \frac{1}{(\Lambda_{R}^{U})_{ij}} &= \frac{\overline{e} \, m_{U_{i}}}{\overline{m}_{U}^{2}} \left[\overline{e}_{i}^{U} \frac{\rho_{L}^{ji}}{\rho_{L}^{ii}} F_{RL}(x_{i}^{U},\xi_{U}) - \frac{g_{L}^{2}}{16\pi^{2}} \sum_{k=1}^{3} \left(\overline{e}_{k}^{U} \rho_{L}^{jk} \rho_{L}^{ki} F_{LL}(x_{k}^{U},\xi_{U}) + \left(\frac{\overline{m}_{U}^{2}}{\overline{m}_{D}^{2}} \right) \overline{e}_{k}^{D} \eta_{L}^{jk} \eta_{L}^{ki} F_{LL}(x_{k}^{D},\xi_{D}) \right) \right], \end{aligned}$$

 $F_{RR}(x,\xi) = F_{LL}(x,\xi)$ $F_{RL}(x,\xi) = F_{LR}(x,\xi) \rightarrow \text{Loop functions}$

Ieading term → dark-fermion mass term absorbed into quark mass

Effective scale proportional to the decaying fermion mass

$$\Gamma(q^i \to q^j \bar{\gamma}) \sim \frac{m_{q_i}^5 \bar{\alpha}}{16\pi^3 \bar{m}_q^4} \times |\text{loop functions}|^2$$

FCNC decays of SM fermions into a Dark Photon

EG, Mele, Raidal, Venturini, PRD 94 (2016)

9 new kind of FCNC signatures predicted !

top	t → c $\overline{\gamma}$, u $\overline{\gamma}$	tau	$\tau \rightarrow \mu \overline{\gamma}$, $e \overline{\gamma}$
bottom	$b \rightarrow s \overline{\gamma}$, $d \overline{\gamma}$	muon	$\mu \rightarrow e \overline{\gamma}$
charm,s	$\mathbf{C} \rightarrow \mathbf{u} \overline{\boldsymbol{\gamma}}$, $\mathbf{S} \rightarrow \mathbf{d} \overline{\boldsymbol{\gamma}}$		

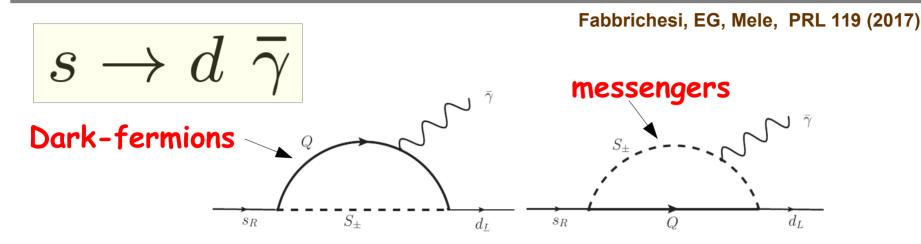
final fermion balanced by a massless invisible (v-like) system

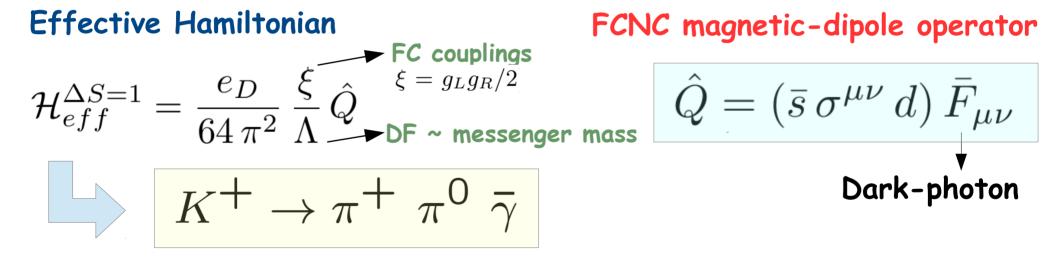
Large and possibly measurable BRs are allowed, up to

■ BR(b → q
$$\bar{\gamma}$$
) ~ 10⁻⁴ - 10⁻³
■ BR(c → u $\bar{\gamma}$) ~ 10⁻⁸ - 10⁻⁴
■ BR(μ → e $\bar{\gamma}$) ~ 10⁻¹⁰ - 10⁻⁹
■ BR(t → q $\bar{\gamma}$) ~ 10⁻¹⁰ - 10⁻⁷
■ BR(τ → I $\bar{\gamma}$) ~ 10⁻¹⁰ - 10⁻⁶

depending on various parameters and on flavor universality structure of messenger sector

FCNC Kaon decay into a massless Dark photon





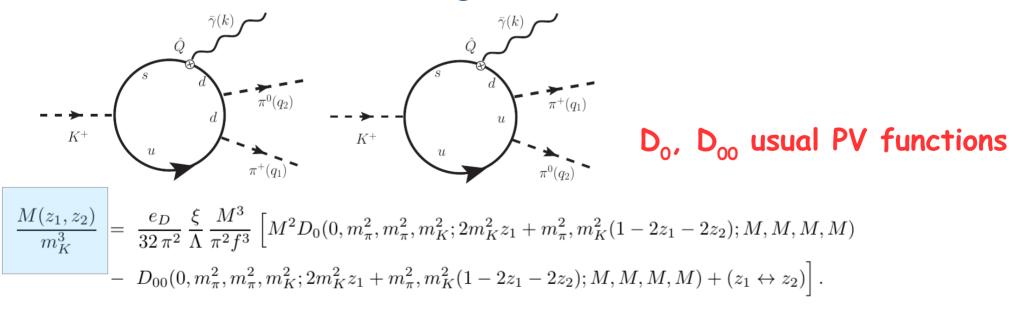
 $K^+
ightarrow \pi^+ \; ar{\gamma} \; \Longrightarrow \;$ for massless dark photon identically vanishes

 $K^{+}(p) \to \pi^{+}(q_1) \pi^{0}(q_2) \bar{\gamma}(k)$

$$\left\langle \bar{\gamma} \ \pi^+ \pi^0 \right| \mathcal{H}_{eff}^{\Delta S=1} \left| K^+ \right\rangle \ = \frac{M(z_1, z_2)}{m_K^3} \varepsilon_{\mu\nu\rho\sigma} q_1^{\nu} q_2^{\rho} k^{\sigma} \varepsilon^{\mu}(k)$$

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} z_1 \mathrm{d} z_2} = \frac{m_K}{(4\pi)^3} \left| M(z_1, z_2) \right|^2 \left\{ z_1 z_2 \left[1 - 2(z_1 + z_2) - r_1^2 - r_2^2 \right] - r_1^2 z_2^2 - r_2^2 z_1^2 \right\}, \quad \text{where } z_i = k \cdot q_i / m_K^2 \text{ and } r_i = M_{\pi_i} / m_K$$

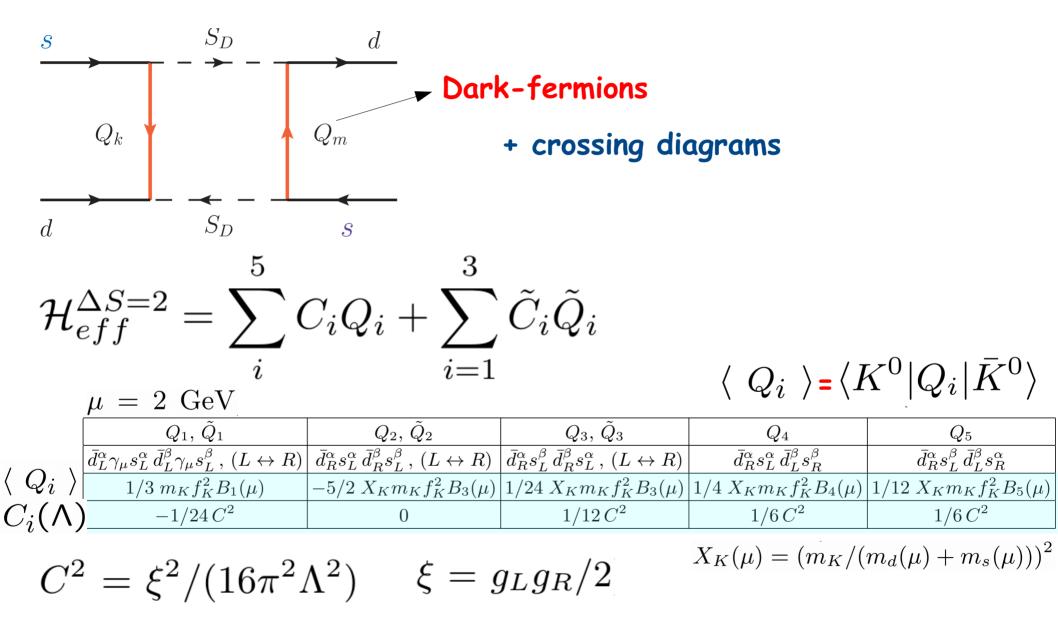
Matrix element estimated using the Chiral-Quark model



Emidio Gabrielli

18-20 April 2018 Lyon IPNL 27

NLO contributions to $\Delta S=2$ effective Hamiltonian



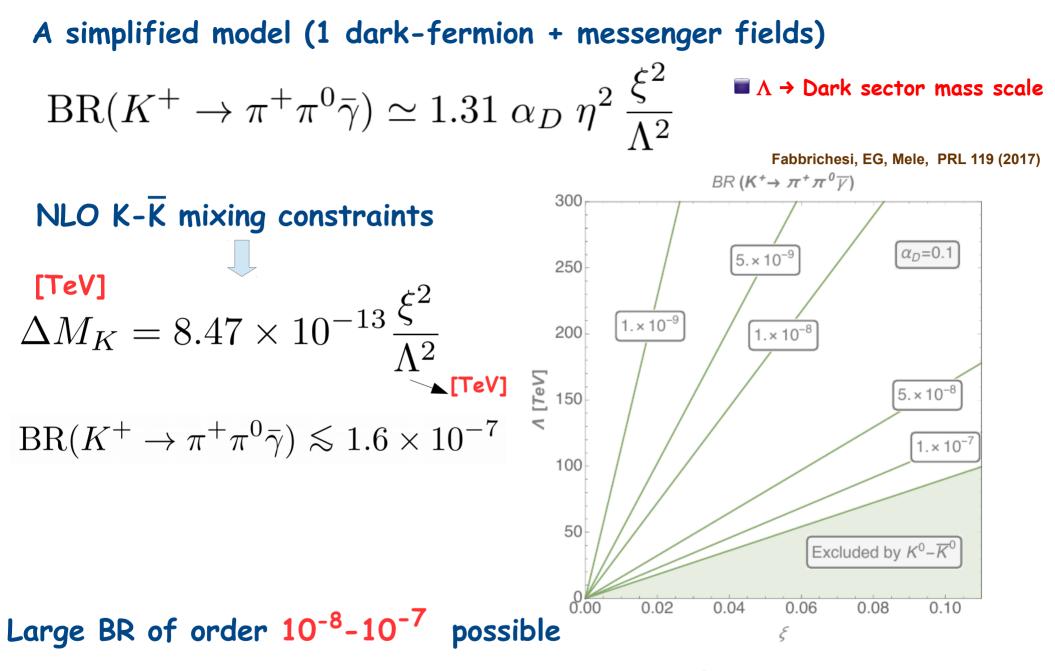


FIG. 3: BR($K^+ \to \pi^+ \pi^0 \bar{\gamma}$) as a function of the effective scale Λ and coupling $\xi = g_L g_R/2$, for a representative choice of the coupling strength $\alpha_D = 0.1$.

Conclusions

- Origin of Yukawa might require existence of a Dark Sector as predicted by a recent proposal to naturally explain Yukawa hierarchy
- Dark sector might have long distance interactions mediated by an unbroken U(1)_F that forecasts a massless Dark Photon
- Higgs boson can be the SM portal to Dark Photons
 - rich phenomenological implications @ LHC and linear colliders
 - ► search for dark photons in $H \rightarrow \gamma \overline{\gamma}$, and $H \rightarrow Z \overline{\gamma}$
- In FCNC sector: new 9 processes predicted
 - ★ + → (c,u) $\overline{\gamma}$, b → (s,d) $\overline{\gamma}$, c → u $\overline{\gamma}$, s → d $\overline{\gamma}$, τ → l $\overline{\gamma}$, μ → e $\overline{\gamma}$
 - not yet experimentally investigated
- FCNC s \rightarrow d $\overline{\gamma}$ transition: golden channel

currently under consideration by NA62 @ CERN

$$K^+ \rightarrow \pi^+ \pi^0 + \overline{\gamma}$$

Backup slides

Yukawa coupling

prediction at 1-loop (in LR symmetric scheme, exact in ξ)

$$Y_f = \left(\frac{\lambda g_L g_R}{16\pi^2}\right) \left(\frac{\xi M_{Q_f}\sqrt{2}}{v_L}\right) f_1(x_f,\xi)$$

vev <H_R> reabsorbed in mixing ξ After EWSB

$$M_{Q_{\mathrm{f}}} = m_{\mathrm{f}} \left(\frac{16\pi^2}{g_L g_R}\right) \frac{1}{\xi f_1(x_{\mathrm{f}},\xi)}$$

Dark-fermion mass >> SM fermion mass

 $f_1(x,\xi)$ loop function of order O(1)

 $x_{\rm f} = M_{Q_{\rm f}}^2 / \bar{m}^2$

Dark fermion spectrum ~ rescaled spectrum of SM one

Phenomenological constraints

- avoid existence of charged stable particle (DM constraints)
- due to the Flavor universality of messenger mass sector
 - lightest messenger state required to be heavier than the heaviest DF (associated to the top-quark)

$$m_{-} \ge M_{Q_t}$$

 \mathbf{O}

$$\bar{m} \geq m_t \left(\frac{16\pi^2}{g_L g_R}\right) F(\xi)$$
implying lower bounds on $\mathbf{v}_{\mathbf{R}} \left(v_R \geq \frac{2m_t^2}{\lambda v_L} \left(\frac{16\pi^2}{g_L g_R}\right)^2 \xi F(\xi)^2$

Lower bounds on messenger masses

■ at large ξ mixing $\bar{m}_U \ge \frac{(110 \text{ TeV}) K_t(\bar{m})}{g_L g_R} \sqrt{1 - \xi_U}$ $\bar{m}_U \ge \frac{(55 \text{ TeV}) K_t(\bar{m})}{\xi_U g_L g_R}$ $\bar{m}_D \ge \frac{(3 \text{ TeV}) K_b(\bar{m})}{g_L g_R} \sqrt{1 - \xi_D}$ $\bar{m}_D \ge \frac{(1.5 \text{ TeV}) K_b(\bar{m})}{\xi_D g_L g_R}$

$$K_{t,b}$$
 renormalization factors $K_{t,b}(\bar{m}) < 1$

Colored-messenger masses naturally above TeV scale

EW messengers potentially lighter → relaxed lower bound
 hierarchy among SU(2)_L and SU(2)_R naturally explained !

Top quark case BR($\uparrow \rightarrow q \overline{\gamma}$) (q=c,u)

• from exp. upper bounds on BR($t \rightarrow q \gamma$)

• for $\xi_U = 0.1$, and $x_3^U = 0.8$ (small-mixing regime)

$$BR^{(t \to u\gamma)}(t \to u\bar{\gamma}) < 1.8 \times 10^{-2} \left(\frac{\alpha}{0.1}\right)$$
$$BR^{(t \to c\gamma)}(t \to c\bar{\gamma}) < 2.3 \times 10^{-1} \left(\frac{\bar{\alpha}}{0.1}\right)$$

• for $\xi_U = 0.8$, and $x_3^U = 0.1$ (large-mixing regime)

$$\begin{aligned} \mathrm{BR}^{(t \to u \bar{\gamma})} &< 3.4 \times 10^{-2} \left(\frac{\bar{\alpha}}{0.1} \right) \\ \mathrm{BR}^{(t \to c \gamma)} (t \to c \bar{\gamma}) &< 4.4 \times 10^{-1} \left(\frac{\bar{\alpha}}{0.1} \right) \end{aligned}$$
large BR are allowed from BR(t $\to q \gamma$)

DM and Vacuum stability bounds on BR($\uparrow \rightarrow q \overline{\gamma}$)

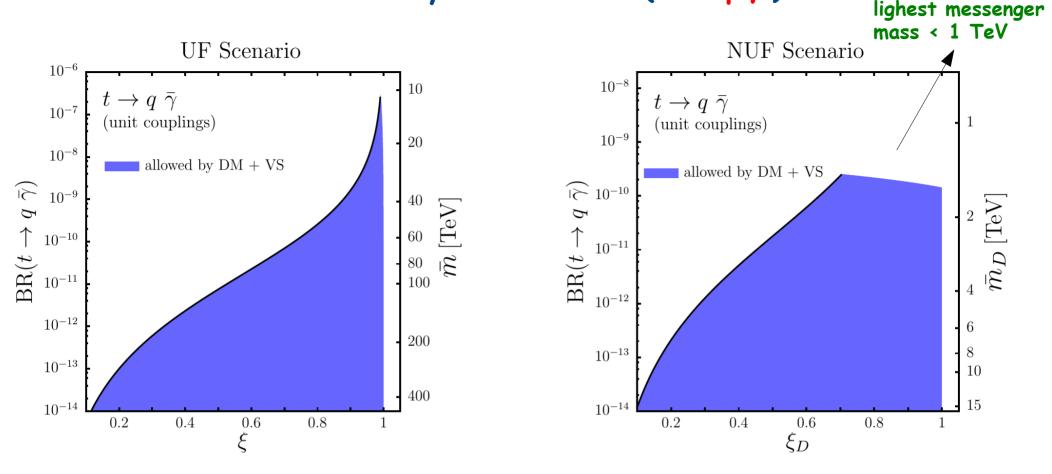
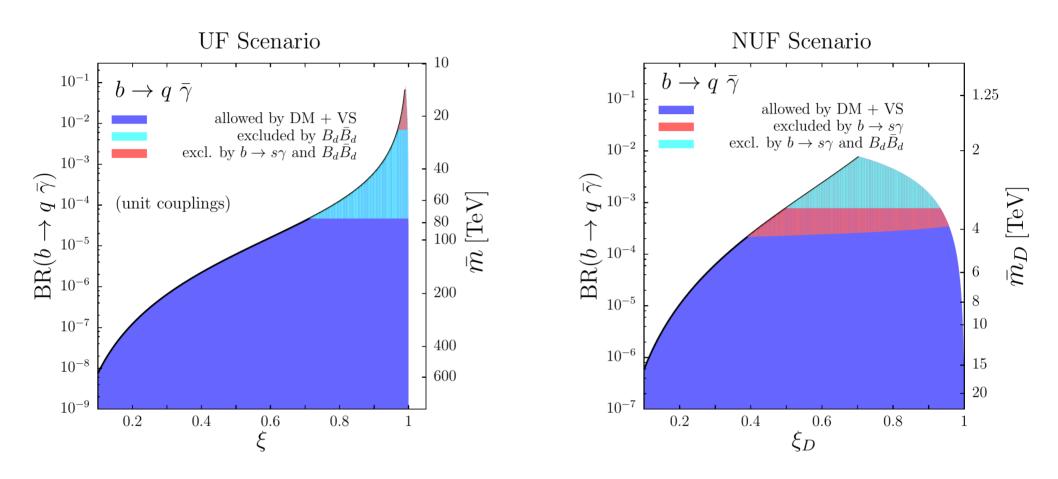


Figure 3: Allowed regions (colored areas) by DM and vacuum stability (VS) constraints for $BR(t \to q \bar{\gamma})$ and for the average messenger mass scales \bar{m} and \bar{m}_D , versus the corresponding mixing ξ and ξ_D , in the UF (left) and NUF (right) scenarios, respectively.

DM and Vacuum stability can set very strong upper bounds on BR (due to large width of top and lower bounds on m above TeV scale)

Excluded by

Bottom quark case BR($b \rightarrow q \overline{\gamma}$) (q=d,s)



Large values of BR possible in both universal and non-universal flavor Scenario (enhancement due to the tiny width of b)

Charm quark case BR($\mathbf{c} \rightarrow \mathbf{u} \ \overline{\mathbf{\gamma}}$)

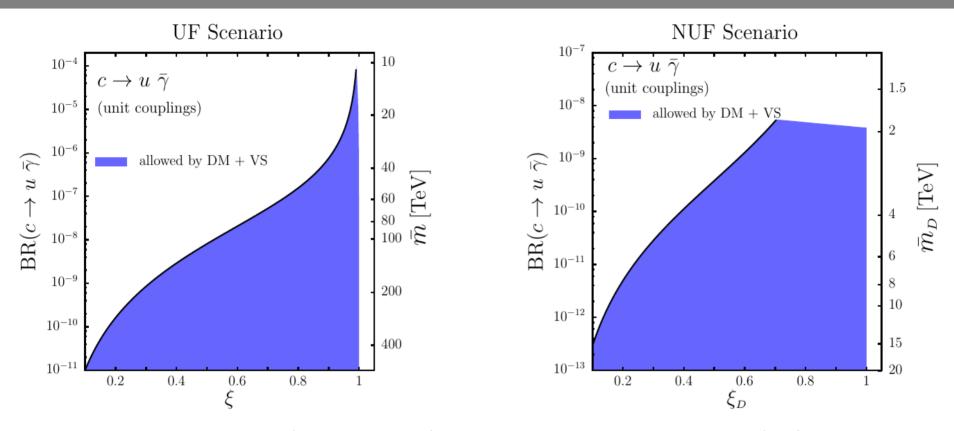


Figure 6: Allowed regions (colored areas) by DM and vacuum-stability (VS) constraints for BR($c \rightarrow u \bar{\gamma}$) and for the average messenger mass scales \bar{m} and \bar{m}_D , versus the corresponding mixing ξ and ξ_D , in the UF (left) and NUF (right) scenarios, respectively. In the left (right) plots we assume $\bar{e} \bar{e}_2^U \rho_L^{12} / \rho_L^{22} \simeq 1$ ($\bar{e} \bar{e}_2^D \eta_L^{12} / \eta_L^{22} \simeq 1$) with all other matrix elements of flavor matrices set to zero.

Large values of BR possible !

FV Leptonic decays BR($I \rightarrow I' \overline{\gamma}$)

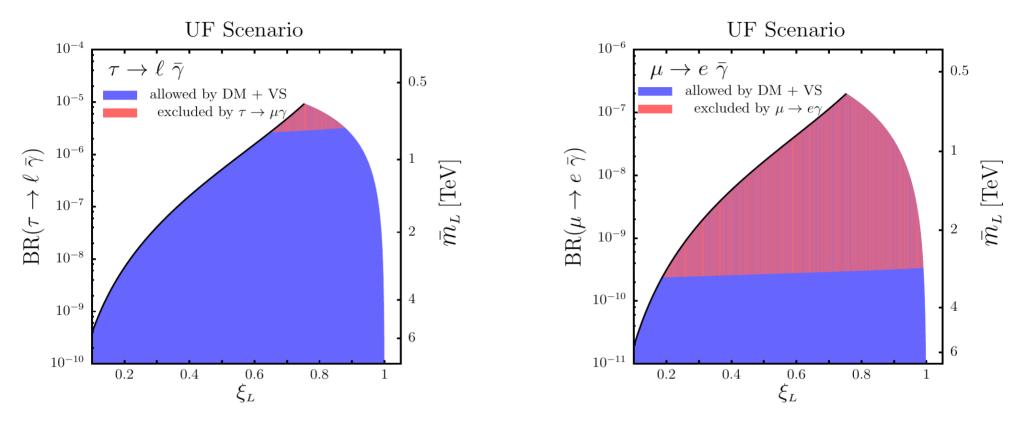


Figure 8: Regions allowed by DM and vacuum stability (VS) constraints for BR($\tau \to \ell \bar{\gamma}$) (left) and BR($\mu \to e \bar{\gamma}$) (right), and for the average messenger mass scale \bar{m}_L , versus the mixing ξ_L , in the UF scenario (blue areas). Superimposed red areas are the subregions excluded by direct constraints on BR($\ell \to \ell' \gamma$). In the left (right) plot, we assume $\bar{e} \bar{e}_3^L \tilde{\eta}_L^{j3} / \tilde{\eta}_L^{33} = 10^{-2}$ $(\bar{e} \bar{e}_3^L \tilde{\eta}_L^{12} / \tilde{\eta}_L^{22} = 10^{-4})$, with j = 1, 2.