# Heavy meson mixing and lifetimes from sum rules

Thomas Rauh IPPP Durham

#### LIO International Conference on Flavour Physics 2018 IPNL Lyon 20.04.18

## Based on work in collaboration with M. Kirk and A. Lenz





#### Mixing in the SM

$$i\frac{d}{dt}\binom{|B_{s}^{0}(t)\rangle}{|\bar{B}_{s}^{0}(t)\rangle} = \left(\hat{M}^{s} - \frac{i}{2}\hat{\Gamma}^{s}\right)\binom{|B_{s}^{0}(t)\rangle}{|\bar{B}_{s}^{0}(t)\rangle} \qquad \underbrace{\mathbf{b}}_{\mathbf{t},\mathbf{c},\mathbf{u}} \underbrace{\mathbf{w}}_{\mathbf{t},\mathbf{c},\mathbf{u}} \underbrace{\mathbf{b}}_{\mathbf{t},\mathbf{c},\mathbf{u}} \underbrace{$$

Factorizes into perturbative Wilson coefficients and hadronic matrix elements:

$$M_{12}^{q} = \frac{G_{F}^{2}}{16\pi^{2}}\lambda_{t}^{2}M_{W}^{2}S_{0}(x_{t})\hat{\eta}_{B} \frac{\langle \overline{B}_{q}|Q_{1}|B_{q}\rangle}{2M_{B_{q}}}$$
  

$$\Gamma_{12}^{q} = -\frac{G_{F}^{2}m_{b}^{2}}{24\pi M_{B_{q}}}\sum_{x=u,c}\sum_{y=u,c}\left[G_{1}^{q,xy}\langle \overline{B}_{q}|Q_{1}|B_{q}\rangle - G_{2}^{q,xy}\langle \overline{B}_{q}|Q_{2}|B_{q}\rangle\right] + \mathcal{O}(1/m_{b})$$

Full basis of dimension-six operators (SM + BSM):

$$Q_{1} = \bar{b}_{i} \gamma_{\mu} (1 - \gamma^{5}) q_{i} \ \bar{b}_{j} \gamma^{\mu} (1 - \gamma^{5}) q_{j},$$

$$Q_{2} = \bar{b}_{i} (1 - \gamma^{5}) q_{i} \ \bar{b}_{j} (1 - \gamma^{5}) q_{j},$$

$$Q_{3} = \bar{b}_{i} (1 - \gamma^{5}) q_{j} \ \bar{b}_{j} (1 - \gamma^{5}) q_{i},$$

$$Q_{4} = \bar{b}_{i} (1 - \gamma^{5}) q_{i} \ \bar{b}_{j} (1 + \gamma^{5}) q_{j},$$

$$Q_{5} = \bar{b}_{i} (1 - \gamma^{5}) q_{j} \ \bar{b}_{j} (1 + \gamma^{5}) q_{i}.$$

T. Rauh (IPPP Durham)

#### Lattice results

Matrix elements can be determined on the lattice. Currently dominated by one result FNAL/MILC 16

We want an independent determination!



T. Rauh (IPPP Durham)

Sum rules give results which are truly independent from the lattice. Based on:

- Analyticity of correlation functions
- Quark-hadron duality

First consider the sum rule for the decay constant. Based on the two-point correlator:

$$\Pi(\omega) = i \int d^d x e^{ipx} \left\langle 0 \left| \mathbf{T} \left[ \tilde{j}^{\dagger}_+(0) \tilde{j}_+(x) \right] \right| 0 \right\rangle$$
$$\tilde{j}_+ = \bar{q} \gamma^5 h^{(+)} \qquad \omega = p \cdot v$$

Use Cauchy to derive a dispersion relation:

$$\Pi(\omega) = \frac{1}{2\pi i} \oint_C d\eta \, \frac{\Pi(\eta)}{\eta - \omega}$$

[Shifman, Vainshtein, Zakharov '79]

T. Rauh (IPPP Durham)







Applying a Borel transform and a cutoff on the continuum part we obtain:

$$F^{2}(\mu)e^{-\frac{\overline{\Lambda}}{t}} = \int_{0}^{\omega_{c}} d\omega e^{-\frac{\omega}{t}}\rho_{\Pi}^{\text{OPE}}(\omega)$$

[Broadhurst,Grozin '92; Bagan, Ball, Braun,Dosch '92; Neubert '92]

| Reference                    | Method | $N_{f}$   | $f_{B^+}(\text{MeV})$ | $f_{B_s}(\text{MeV})$ | $f_{B_s}/f_{B^+}$ |
|------------------------------|--------|-----------|-----------------------|-----------------------|-------------------|
| ETM 13 [85] *, <sup>†</sup>  | LQCD   | 2+1+1     | 196(9)                | 235(9)                | 1.201(25)         |
| HPQCD 13 [86]                | LQCD   | 2 + 1 + 1 | 184(4)                | 224(5)                | 1.217(8)          |
| Average                      | LQCD   | 2+1+1     | 184(4)                | 224(5)                | 1.217(8)          |
| Aoki 14 [87] *, <sup>‡</sup> | LQCD   | 2+1       | 218.8(6.5)(30.8)      | 263.5(4.8)(36.7)      | 1.193(20)(44)     |
| RBC/UKQCD 14 [88]            | LQCD   | 2 + 1     | 195.6(6.4)(13.3)      | 235.4(5.2)(11.1)      | 1.223(14)(70)     |
| HPQCD 12 [89] *              | LQCD   | 2 + 1     | 191(1)(8)             | 228(3)(10)            | 1.188(12)(13)     |
| HPQCD 12 [89] *              | LQCD   | 2 + 1     | $189(3)(3)^{\star}$   | _                     | _                 |
| HPQCD 11 [90]                | LQCD   | 2 + 1     | _                     | 225(3)(3)             |                   |
| Fermilab/MILC 11 [69]        | LQCD   | 2 + 1     | 196.9(5.5)(7.0)       | 242.0(5.1)(8.0)       | 1.229(13)(23)     |
| Average                      | LQCD   | 2+1       | 189.9(4.2)            | 228.6(3.8)            | 1.210(15)         |
| Our average                  | LQCD   | Both      | 187.1(4.2)            | 227.2(3.4)            | 1.215(7)          |
| Wang 15 [71] §               | QCD SR |           | 194(15)               | 231(16)               | 1.19(10)          |
| Baker 13 [91]                | QCD SR |           | 186(14)               | 222(12)               | 1.19(4)           |
| Lucha 13 [92]                | QCD SR |           | 192.0(14.6)           | 228.0(19.8)           | 1.184(24)         |
| Gelhausen 13 [72]            | QCD SR |           | $207(^{+17}_{0})$     | 242(+17)              | $1.17(^{+3})$     |
| Narison 12 [73]              | QCD SR |           | 206(7)                | 234(5)                | 1.14(3)           |
| Hwang 09 [75]                | LFQM   |           | —                     | $270.0(42.8)^{\P}$    | 1.32(8)           |

[PDG '16]

Sum rules are in good agreement with lattice, but have larger uncertainties

T. Rauh (IPPP Durham)

#### HQET sum rules: Bag parameters

Consider the three-point correlator:



$$K_{\tilde{Q}}(\omega_{1},\omega_{2}) = \int d^{d}x_{1}d^{d}x_{2}e^{ip_{1}\cdot x_{1}-ip_{2}\cdot x_{2}}\left\langle 0\left| \mathrm{T}\left[\tilde{j}_{+}(x_{2})\tilde{Q}(0)\tilde{j}_{-}(x_{1})\right]\right|0\right\rangle$$

Going through the same steps one obtains the sum rule: [Chetyrkin, Kataev, Krasulin, Pivovarov '01]  $F^{2}(\mu)\langle \tilde{Q}(\mu)\rangle e^{-\frac{\bar{\Lambda}}{t_{1}}-\frac{\bar{\Lambda}}{t_{2}}} = \int_{0}^{\omega_{c}} d\omega_{1} d\omega_{2} e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}} \rho_{\tilde{Q}}^{\text{OPE}}(\omega_{1},\omega_{2})$ 

 $\rho_{\tilde{Q}}^{\text{OPE}}(\omega_1,\omega_2) = \rho_{\tilde{Q}}^{\text{pert}}(\omega_1,\omega_2) + \rho_{\tilde{Q}}^{\langle \bar{q}q \rangle}(\omega_1,\omega_2) \langle \bar{q}q \rangle + \rho_{\tilde{Q}}^{\langle \alpha_s G^2 \rangle}(\omega_1,\omega_2) \langle \alpha_s G^2 \rangle + \dots$ 

In practice we compute the correlator and then take its double discontinuity



T. Rauh (IPPP Durham)

#### Three-point correlator

NLO accuracy in the perturbative part requires a three-loop calculation:



Master integrals: [Grozin, Lee '08]

Operator Q1: [Grozin, Mannel, Klein, Pivovarov '16]

All dimension six operators: [Kirk, Lenz, TR '17]

#### Three-point correlator

NLO accuracy in the perturbative part requires a three-loop calculation:



 $\rho_{\tilde{Q}_i}^{\text{pert}}(\omega_1,\omega_2) = A_{\tilde{Q}_i}\rho_{\Pi}(\omega_1)\rho_{\Pi}(\omega_2) + \frac{\omega_1^2\omega_2^2}{\pi^4}\frac{\alpha_s}{4\pi}r_{\tilde{Q}_i}\left(\frac{\omega_2}{\omega_1},L_\omega\right)$ 

Operator Q1: [Grozin, Mannel, Klein, Pivovarov '16]

All dimension six operators: [Kirk, Lenz, TR '17]

Factorizable contribution, reproduces the vacuum saturation approximation B=1 (VSA)

$$\begin{aligned} r_{\tilde{Q}_1}(x, L_{\omega}) &= 8 - \frac{a_2}{2} - \frac{8\pi^2}{3}, \\ r_{\tilde{Q}_2}(x, L_{\omega}) &= 25 + \frac{a_1}{2} - \frac{4\pi^2}{3} + 6L_{\omega} + \phi(x), \\ r_{\tilde{Q}_4}(x, L_{\omega}) &= 16 - \frac{a_3}{4} - \frac{4\pi^2}{3} + 3L_{\omega} + \frac{\phi(x)}{2}, \\ r_{\tilde{Q}_5}(x, L_{\omega}) &= 29 - \frac{a_3}{2} - \frac{8\pi^2}{3} + 6L_{\omega} + \phi(x). \end{aligned}$$

T. Rauh (IPPP Durham)

#### Sum rule for Bag parameters

Formulate sum rule for deviation  $\Delta B_{\tilde{Q}}(\mu) = B_{\tilde{Q}}(\mu) - 1$  from the HQET Bag parameters  $\langle \tilde{Q}(\mu) \rangle = A_{\tilde{Q}} F^2(\mu) B_{\tilde{Q}}(\mu)$ .

$$\begin{split} \Delta B_{\tilde{Q}_{i}} &= \frac{1}{A_{\tilde{Q}_{i}}F(\mu)^{4}} \int_{0}^{\omega_{c}} d\omega_{1} d\omega_{2} e^{\frac{\overline{\Lambda}-\omega_{1}}{t_{1}} + \frac{\overline{\Lambda}-\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}(\omega_{1},\omega_{2}) \\ &= \frac{1}{A_{\tilde{Q}_{i}}} \frac{\int_{0}^{\omega_{c}} d\omega_{1} d\omega_{2} e^{-\frac{\omega_{1}}{t_{1}} - \frac{\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}(\omega_{1},\omega_{2})}{\left(\int_{0}^{\omega_{c}} d\omega_{1} e^{-\frac{\omega_{1}}{t_{1}}} \rho_{\Pi}(\omega_{1})\right) \left(\int_{0}^{\omega_{c}} d\omega_{2} e^{-\frac{\omega_{2}}{t_{2}}} \rho_{\Pi}(\omega_{2})\right)}. \end{split}$$

#### Sum rule for Bag parameters

Formulate sum rule for deviation  $\Delta B_{\tilde{Q}}(\mu) = B_{\tilde{Q}}(\mu) - 1$  from the HQET Bag parameters  $\langle \tilde{Q}(\mu) \rangle = A_{\tilde{Q}} F^2(\mu) B_{\tilde{Q}}(\mu)$ .

$$\begin{split} \Delta B_{\tilde{Q}_{i}} &= \frac{1}{A_{\tilde{Q}_{i}}F(\mu)^{4}} \int_{0}^{\omega_{c}} d\omega_{1} d\omega_{2} e^{\frac{\overline{\Lambda}-\omega_{1}}{t_{1}} + \frac{\overline{\Lambda}-\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}(\omega_{1},\omega_{2}) \\ &= \frac{1}{A_{\tilde{Q}_{i}}} \frac{\int_{0}^{\omega_{c}} d\omega_{1} d\omega_{2} e^{-\frac{\omega_{1}}{t_{1}} - \frac{\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}(\omega_{1},\omega_{2})}{\left(\int_{0}^{\omega_{c}} d\omega_{1} e^{-\frac{\omega_{1}}{t_{1}}} \rho_{\Pi}(\omega_{1})\right) \left(\int_{0}^{\omega_{c}} d\omega_{2} e^{-\frac{\omega_{2}}{t_{2}}} \rho_{\Pi}(\omega_{2})\right)}. \end{split}$$

Dispersion relation is not violated by arbitrary analytical weight function (Note of caution: Duality breaks down for pathological choices)

$$F^{4}(\mu)e^{-\frac{\overline{\Lambda}}{t_{1}}-\frac{\overline{\Lambda}}{t_{2}}}w(\overline{\Lambda},\overline{\Lambda}) = \int_{0}^{\omega_{c}} d\omega_{1}d\omega_{2}e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}}w(\omega_{1},\omega_{2})\rho_{\Pi}(\omega_{1})\rho_{\Pi}(\omega_{2}) + \dots$$

With an appropriate choice we obtain an analytic result for the pert contribution:

$$\Delta B_{\tilde{Q}_i}^{\text{pert}}(\mu_{\rho}) = \frac{4}{N_c^2 A_{\tilde{Q}_i}} \frac{\alpha_s(\mu_{\rho})}{4\pi} r_{\tilde{Q}_i} \left(1, \log \frac{\mu_{\rho}^2}{4\overline{\Lambda}^2}\right).$$

T. Rauh (IPPP Durham)

#### Results

- Determine HQET Bag parameters at low scale  $\mu_{\rho} \sim 1.5 \text{ GeV}$  from sum rules
- Run up to  $\mu_m \sim m_b$  and match to QCD Bag parameters at NLO
- Detailed analysis performed in 1711.02100



#### **B-mixing observables**

Update of 1711.02100 with CKM elements from CKMFitter and new decay constants from [FNAL/MILC '17]:



T. Rauh (IPPP Durham)

#### **B-mixing observables**

Update of 1711.02100 with CKM elements from CKMFitter and new decay constants from [FNAL/MILC '17]:



T. Rauh (IPPP Durham)

#### **B** meson lifetimes



T. Rauh (IPPP Durham)

#### Heavy quark expansion in charm?

B-physics: HQE is well established approach,  $\Lambda/m_b \sim 0.2 \ll 1$ 

D-physics: HQE commonly dismissed,  $\Lambda/m_c \sim 0.2 \, m_b/m_c \sim 0.7 pprox 1$ 

BUT: HQE is really an expansion in  $\Lambda$ /momentum release

- $\Delta \Gamma_s$  dominated by  $D_s^{(*)+} D_s^{(*)-}$  final state, momentum release  $\sim 3.5 \text{ GeV}$
- D decays dominated by  ${
  m K}\pi^{(1-3)}$  final state, momentum release  $\sim 1.7~{
  m GeV}$
- expected expansion parameter is of the order 0.4

Small enough for convergence?

#### Heavy quark expansion in charm?

B-physics: HQE is well established approach,  $\Lambda/m_b \sim 0.2 \ll 1$ 

D-physics: HQE commonly dismissed,  $\Lambda/m_c \sim 0.2 \, m_b/m_c \sim 0.7 pprox 1$ 

BUT: HQE is really an expansion in  $\Lambda$ /momentum release

- $\Delta \Gamma_s$  dominated by  $D_s^{(*)+} D_s^{(*)-}$  final state, momentum release  $\sim 3.5 \text{ GeV}$
- D decays dominated by  ${
  m K}\pi^{(1-3)}$  final state, momentum release  $\sim 1.7~{
  m GeV}$
- expected expansion parameter is of the order 0.4

Small enough for convergence?





#### Matrix elements



- Good agreement with lattice (using lattice results for the decay constant)
- Larger uncertainties due to lower matching scale
- Also: first determination of  $\Delta C = 0$  matrix elements in 1711.02100

T. Rauh (IPPP Durham)

#### D lifetimes as test of HQE

HQE provides good description of lifetimes in charm sector:





Good convergence: NLO QCD +28%, 1/mc -34%. Good behaviour under scale variation above about 1 GeV.

#### **Conclusions & outlook**

- Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.
- The HQE is in terrific shape. Lifetimes even look promising in the charm sector.
- Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'. [cf. talk by M. Kirk]
- First state-of-the-art results for  $\Delta F = 0$  matrix elements. Confirmation from lattice would be interesting.

### SINCE YEARS OF BEGGING DID NOT HELP – IT'S TIME TO PROVOKE

Lifetimes are too heavy for lattice physicists!

## The strongest lattice researcher alive



#### Arbitrary sum rule researcher



Matrix elements for lifetimes of HEAVY mesons

[Lenz Implications '17]

T. Rauh (IPPP Durham)

#### **Conclusions & outlook**

- Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.
- The HQE is in terrific shape. Lifetimes even look promising in the charm sector.
- Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'. [cf. talk by M. Kirk]
- First state-of-the-art results for  $\Delta F = 0$  matrix elements. Confirmation from lattice would be interesting.
- NNLO QCD-HQET matching calculations can significantly decrease uncertainties for dimension-six operators. first step: [Grozin, Mannel, Pivovarev '17]
- Uncertainties in decay rate difference and lifetimes can be reduced considerably by a sum rule determination of the dimension seven matrix elements.

| $\Delta B = 2$       | $\overline{\Lambda}$ | intrinsic SR | condensates | $\mu_{ ho}$          | $1/m_b$     | $\mu_m$              | $a_i$                |
|----------------------|----------------------|--------------|-------------|----------------------|-------------|----------------------|----------------------|
| $\overline{B}_{Q_1}$ | $^{+0.001}_{-0.002}$ | $\pm 0.018$  | $\pm 0.004$ | $^{+0.011}_{-0.022}$ | $\pm 0.010$ | $^{+0.045}_{-0.039}$ | $^{+0.007}_{-0.007}$ |
| $\overline{B}_{Q_2}$ | $^{+0.014}_{-0.017}$ | $\mp 0.020$  | $\pm 0.004$ | $^{+0.012}_{-0.019}$ | $\pm 0.010$ | $^{+0.071}_{-0.062}$ | $^{+0.015}_{-0.015}$ |
| $\overline{B}_{Q_3}$ | $^{+0.060}_{-0.074}$ | $\pm 0.107$  | $\pm 0.023$ | $^{+0.016}_{-0.008}$ | $\pm 0.010$ | $^{+0.086}_{-0.069}$ | $^{+0.053}_{-0.052}$ |
| $\overline{B}_{Q_4}$ | $^{+0.007}_{-0.006}$ | $\pm 0.021$  | $\pm 0.011$ | $^{+0.003}_{-0.003}$ | $\pm 0.010$ | $^{+0.088}_{-0.079}$ | $^{+0.005}_{-0.006}$ |
| $\overline{B}_{Q_5}$ | $^{+0.019}_{-0.015}$ | $\pm 0.018$  | $\pm 0.009$ | $+0.004 \\ -0.006$   | $\pm 0.010$ | $^{+0.077}_{-0.068}$ | $^{+0.012}_{-0.012}$ |

| $\Delta B = 0$          | $\overline{\Lambda}$ | intrinsic SR | condensates | $\mu_ ho$            | $1/m_b$     | $\mu_m$              | $a_i$                |
|-------------------------|----------------------|--------------|-------------|----------------------|-------------|----------------------|----------------------|
| $\overline{B}_1$        | $^{+0.003}_{-0.002}$ | $\pm 0.019$  | $\pm 0.002$ | $+0.002 \\ -0.002$   | $\pm 0.010$ | $+0.060 \\ -0.052$   | $+0.002 \\ -0.003$   |
| $\overline{B}_2$        | $^{+0.001}_{-0.001}$ | $\mp 0.020$  | $\pm 0.002$ | $^{+0.000}_{-0.001}$ | $\pm 0.010$ | $+0.084 \\ -0.076$   | $^{+0.001}_{-0.002}$ |
| $\overline{\epsilon}_1$ | $^{+0.006}_{-0.007}$ | $\pm 0.022$  | $\pm 0.003$ | $^{+0.003}_{-0.003}$ | $\pm 0.010$ | $^{+0.010}_{-0.012}$ | $^{+0.006}_{-0.007}$ |
| $\overline{\epsilon}_2$ | $^{+0.005}_{-0.006}$ | $\pm 0.017$  | $\pm 0.003$ | $^{+0.002}_{-0.001}$ | $\pm 0.010$ | $^{+0.001}_{-0.002}$ | $^{+0.003}_{-0.004}$ |

| $\Delta C = 2$       | $\overline{\Lambda}$ | intrinsic SR | condensates | $\mu_{ ho}$          | $1/m_c$     | $\mu_m$              | $a_i$       |
|----------------------|----------------------|--------------|-------------|----------------------|-------------|----------------------|-------------|
| $\overline{B}_{Q_1}$ | $^{+0.001}_{-0.002}$ | $\pm 0.013$  | $\pm 0.003$ | $^{+0.009}_{-0.021}$ | $\pm 0.030$ | $^{+0.039}_{-0.021}$ | $\pm 0.003$ |
| $\overline{B}_{Q_2}$ | $^{+0.011}_{-0.014}$ | $\mp 0.015$  | $\pm 0.003$ | $^{+0.010}_{-0.016}$ | $\pm 0.030$ | $^{+0.092}_{-0.050}$ | $\pm 0.012$ |
| $\overline{B}_{Q_3}$ | $^{+0.037}_{-0.045}$ | $\pm 0.059$  | $\pm 0.013$ | $^{+0.016}_{-0.016}$ | $\pm 0.030$ | $^{+0.116}_{-0.059}$ | $\pm 0.016$ |
| $\overline{B}_{Q_4}$ | $^{+0.006}_{-0.005}$ | $\pm 0.017$  | $\pm 0.009$ | $^{+0.003}_{-0.003}$ | $\pm 0.030$ | $^{+0.131}_{-0.071}$ | $\pm 0.004$ |
| $\overline{B}_{Q_5}$ | $^{+0.014}_{-0.012}$ | $\pm 0.014$  | $\pm 0.007$ | $^{+0.004}_{-0.005}$ | $\pm 0.030$ | $^{+0.127}_{-0.069}$ | $\pm 0.004$ |

| $\Delta C = 0$          | $\overline{\Lambda}$ | intrinsic SR | condensates | $\mu_{ ho}$          | $1/m_c$     | $\mu_m$              | $a_i$                |
|-------------------------|----------------------|--------------|-------------|----------------------|-------------|----------------------|----------------------|
| $\overline{B}_1$        | $+0.004 \\ -0.003$   | $\pm 0.017$  | $\pm 0.002$ | $^{+0.002}_{-0.002}$ | $\pm 0.030$ | $^{+0.068}_{-0.037}$ | $+0.003 \\ -0.005$   |
| $\overline{B}_2$        | $+0.001 \\ -0.000$   | $\mp 0.015$  | $\pm 0.001$ | $^{+0.000}_{-0.000}$ | $\pm 0.030$ | $^{+0.120}_{-0.065}$ | $^{+0.000}_{-0.001}$ |
| $\overline{\epsilon}_1$ | $+0.007 \\ -0.008$   | $\pm 0.024$  | $\pm 0.004$ | $^{+0.003}_{-0.004}$ | $\pm 0.030$ | $^{+0.012}_{-0.022}$ | $^{+0.006}_{-0.008}$ |
| $\overline{\epsilon}_2$ | $+0.003 \\ -0.004$   | $\pm 0.011$  | $\pm 0.002$ | $^{+0.001}_{-0.001}$ | $\pm 0.030$ | $+0.000 \\ -0.000$   | $+0.001 \\ -0.002$   |

|                       | $\Delta M_s^{\rm SM} \ [{\rm ps}^{-1}]$ | $\Delta \Gamma_s^{\rm PS} \ [{\rm ps}^{-1}]$ | $a_{\rm sl}^{s,{\rm PS}}  [10^{-5}]$ |                       | $\Delta M_d^{\rm SM} \ [{\rm ps}^{-1}]$ | $\Delta \Gamma_d^{\rm PS} \ [10^{-3}  {\rm ps}^{-1}]$ | $a_{\rm sl}^{d,{\rm PS}} \; [10^{-4}]$ |
|-----------------------|-----------------------------------------|----------------------------------------------|--------------------------------------|-----------------------|-----------------------------------------|-------------------------------------------------------|----------------------------------------|
| $\overline{B}_{Q_1}$  | $\pm 1.1$                               | $\pm 0.005$                                  | $\pm 0.01$                           | $\overline{B}_{Q_1}$  | $+0.04 \\ -0.03$                        | $\pm 0.16$                                            | $\pm 0.02$                             |
| $\overline{B}_{Q_3}$  | $\pm 0.0$                               | $\pm 0.005$                                  | $\pm 0.01$                           | $\overline{B}_{Q_3}$  | $\pm 0.00$                              | $^{+0.17}_{-0.16}$                                    | $\pm 0.03$                             |
| $\overline{B}_{R_0}$  | $\pm 0.0$                               | $\pm 0.003$                                  | $\pm 0.00$                           | $\overline{B}_{R_0}$  | $\pm 0.00$                              | $\pm 0.11$                                            | $\pm 0.01$                             |
| $\overline{B}_{R_1}$  | $\pm 0.0$                               | $\pm 0.000$                                  | $\pm 0.00$                           | $\overline{B}_{R_1}$  | $\pm 0.00$                              | $\pm 0.01$                                            | $\pm 0.00$                             |
| $\overline{B}_{R_1'}$ | $\pm 0.0$                               | $\pm 0.000$                                  | $\pm 0.00$                           | $\overline{B}_{R_1'}$ | $\pm 0.00$                              | $\pm 0.01$                                            | $\pm 0.00$                             |
| $\overline{B}_{R_2}$  | $\pm 0.0$                               | $\pm 0.016$                                  | $\pm 0.00$                           | $\overline{B}_{R_2}$  | $\pm 0.00$                              | $\pm 0.54$                                            | $\pm 0.00$                             |
| $\overline{B}_{R_3}$  | $\pm 0.0$                               | $\pm 0.001$                                  | $\pm 0.02$                           | $\overline{B}_{R_3}$  | $\pm 0.00$                              | $\pm 0.00$                                            | $\pm 0.04$                             |
| $\overline{B}_{R'_3}$ | $\pm 0.0$                               | $\pm 0.000$                                  | $\pm 0.05$                           | $\overline{B}_{R'_3}$ | $\pm 0.00$                              | $\pm 0.01$                                            | $\pm 0.09$                             |
| $f_{B_s}$             | $\pm 0.5$                               | $\pm 0.002$                                  | $\pm 0.00$                           | $f_B$                 | $\pm 0.03$                              | $\pm 0.11$                                            | $\pm 0.00$                             |
| $\mu_1$               | $\pm 0.0$                               | $^{+0.007}_{-0.018}$                         | $^{+0.04}_{-0.08}$                   | $\mu_1$               | $\pm 0.00$                              | $^{+0.24}_{-0.62}$                                    | $^{+0.17}_{-0.07}$                     |
| $\mu_2$               | $\pm 0.1$                               | $+0.000 \\ -0.002$                           | $\pm 0.01$                           | $\mu_2$               | $\pm 0.00$                              | $+0.00 \\ -0.08$                                      | $^{+0.01}_{-0.03}$                     |
| $m_b$                 | $\pm 0.0$                               | $+0.000 \\ -0.001$                           | $\pm 0.01$                           | $m_b$                 | $\pm 0.00$                              | $^{+0.01}_{-0.03}$                                    | $^{+0.01}_{-0.03}$                     |
| $m_c$                 | $\pm 0.0$                               | $+0.000 \\ -0.001$                           | $\pm 0.06$                           | $m_c$                 | $\pm 0.00$                              | $^{+0.01}_{-0.02}$                                    | $\pm 0.13$                             |
| $\alpha_s$            | $\pm 0.0$                               | $\pm 0.000$                                  | $\pm 0.04$                           | $\alpha_s$            | $\pm 0.00$                              | $\pm 0.01$                                            | $\pm 0.08$                             |
| CKM                   | $^{+1.4}_{-1.3}$                        | $\pm 0.006$                                  | $^{+0.21}_{-0.22}$                   | CKM                   | $\pm 0.08$                              | $^{+0.38}_{-0.37}$                                    | $^{+0.47}_{-0.44}$                     |

T. Rauh (IPPP Durham)

| $\overline{B}_1$   | $\overline{B}_2$   | $\overline{\epsilon}_1$ | $\overline{\epsilon}_2$ | $ ho_3$     | $ ho_4$     | $\sigma_3$  | $\sigma_4$  |
|--------------------|--------------------|-------------------------|-------------------------|-------------|-------------|-------------|-------------|
| $\pm 0.002$        | $\pm 0.000$        | $^{+0.016}_{-0.015}$    | $\pm 0.004$             | $\pm 0.001$ | $\pm 0.000$ | $\pm 0.013$ | $\pm 0.000$ |
| $f_B$              | $\mu_1$            | $\mu_0$                 | $m_b$                   | $m_c$       | $lpha_s$    | CKM         |             |
| $+0.004 \\ -0.003$ | $+0.000 \\ -0.013$ | $^{+0.000}_{-0.006}$    | $^{+0.000}_{-0.001}$    | $\pm 0.000$ | $\pm 0.002$ | $\pm 0.006$ |             |

Table 8: Individual errors for the ratio  $\tau(B^+)/\tau(B^0)$  in the PS mass scheme.

| $\overline{B}_1$   | $\overline{B}_2$   | $\overline{\epsilon}_1$ | $\overline{\epsilon}_2$ | $ ho_3$    | $ ho_4$           | $\sigma_3$ | $\sigma_4$ |
|--------------------|--------------------|-------------------------|-------------------------|------------|-------------------|------------|------------|
| $^{+0.07}_{-0.05}$ | $\pm 0.00$         | $^{+0.52}_{-0.47}$      | $\pm 0.017$             | $\pm 0.05$ | $\pm 0.00$        | $\pm 0.46$ | $\pm 0.00$ |
| $f_B$              | $\mu_1$            | $\mu_0$                 | $m_c$                   | $m_s$      | $\alpha_s$        | CKM        |            |
| $\pm 0.08$         | $^{+0.07}_{-0.40}$ | $^{+0.08}_{-0.21}$      | $\pm 0.08$              | $\pm 0.00$ | $^{+0.07}_{0.06}$ | $\pm 0.00$ |            |

Table 9: Individual errors for the ratio  $\tau(D^+)/\tau(D^0)$  in the PS mass scheme.

T. Rauh (IPPP Durham)