Heavy meson mixing and lifetimes from sum rules

Thomas Rauh
IPPP Durham

LIO International Conference on Flavour Physics 2018 IPNL Lyon
20.04.18

Based on work in collaboration with
M. Kirk and A. Lenz

Mixing in the SM

$$
i \frac{d}{d t}\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}=\left(\hat{M}^{s}-\frac{i}{2} \hat{\Gamma}^{s}\right)\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}
$$

Factorizes into perturbative Wilson coefficients and hadronic matrix elements:

$$
\begin{aligned}
M_{12}^{q} & =\frac{G_{F}^{2}}{16 \pi^{2}} \lambda_{t}^{2} M_{W}^{2} S_{0}\left(x_{t}\right) \hat{\eta}_{B} \frac{\left\langle\bar{B}_{q}\right| Q_{1}\left|B_{q}\right\rangle}{2 M_{B_{q}}} \\
\Gamma_{12}^{q} & =-\frac{G_{F}^{2} m_{b}^{2}}{24 \pi M_{B_{q}}} \sum_{x=u, c} \sum_{y=u, c}\left[G_{1}^{q, x y}\left\langle\bar{B}_{q}\right| Q_{1}\left|B_{q}\right\rangle-G_{2}^{q, x y}\left\langle\bar{B}_{q}\right| Q_{2}\left|B_{q}\right\rangle\right]+\mathcal{O}\left(1 / m_{b}\right)
\end{aligned}
$$

Full basis of dimension-six operators ($\mathrm{SM}+\mathrm{BSM}$):

$$
\begin{aligned}
Q_{1} & =\bar{b}_{i} \gamma_{\mu}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}, & & \\
Q_{2} & =\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{j}, & & Q_{3}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{i}, \\
Q_{4} & =\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{j}, & & Q_{5}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{i} .
\end{aligned}
$$

Lattice results

Matrix elements can be determined on the lattice. Currently dominated by one result FNAL/MILC 16

We want an independent determination!

$$
\begin{aligned}
& \langle Q(\mu)\rangle=A_{Q} f_{B}^{2} M_{B}^{2} B_{Q}(\mu) \\
& A_{Q_{1}}=2+\frac{2}{N_{c}} \\
& A_{Q_{2}}=\frac{M_{B}^{2}}{\left(m_{b}+m_{q}\right)^{2}}\left(-2+\frac{1}{N_{c}}\right), \\
& A_{Q_{4}}=\frac{2 M_{B}^{2}}{\left(m_{b}+m_{q}\right)^{2}}+\frac{1}{N_{c}}
\end{aligned}
$$

$$
A_{Q_{3}}=\frac{M_{B}^{2}}{\left(m_{b}+m_{q}\right)^{2}}\left(1-\frac{2}{N_{c}}\right),
$$

$$
A_{Q_{5}}=1+\frac{2 M_{B}^{2}}{N_{c}\left(m_{b}+m_{q}\right)^{2}},
$$

HQET sum rules: decay constant

Sum rules give results which are truly independent from the lattice. Based on:

- Analyticity of correlation functions
[Shifman, Vainshtein, Zakharov '79]
- Quark-hadron duality

First consider the sum rule for the decay constant. Based on the two-point correlator:

$$
\begin{gathered}
\Pi(\omega)=i \int d^{d} x e^{i p x}\langle 0| \mathrm{T}\left[\tilde{j}_{+}^{\dagger}(0) \tilde{j}_{+}(x)\right]|0\rangle \\
\tilde{j}_{+}=\bar{q} \gamma^{5} h^{(+)} \quad \omega=p \cdot v
\end{gathered}
$$

Use Cauchy to derive a dispersion relation:

$$
\Pi(\omega)=\frac{1}{2 \pi i} \oint_{C} d \eta \frac{\Pi(\eta)}{\eta-\omega}
$$

HQET sum rules: decay constant

Deform the contour:

HQET sum rules: decay constant

Deform the contour:

Can be computed $\Pi(\omega)=\int_{0}^{\infty} d \eta \frac{\rho_{\Pi}(\eta)}{\eta-\omega}+\oint d \eta \frac{\Pi(\eta)}{\eta-\omega}$ with an OPE when ω is far away from the physical cut

HQET sum rules: decay constant

Deform the contour:

Can be computed with an OPE when ω is far away from the physical cut

$$
\Pi(\omega)=\int_{0}^{\infty} d \eta \frac{\rho_{\Pi}(\eta)}{\eta-\omega}+\oint d \eta \frac{\Pi(\eta)}{\eta-\omega}
$$

Discontinuity
$\rho_{\Pi}^{\mathrm{had}}(\omega)=F_{\boldsymbol{\Delta}}^{2}(\mu) \delta(\omega-\bar{\Lambda})+\rho_{\Pi}^{\text {cont }}(\omega)$
HQET decay constant

HQET sum rules: decay constant

Applying a Borel transform and a cutoff on the continuum part we obtain:

$$
F^{2}(\mu) e^{-\frac{\bar{\Lambda}}{t}}=\int_{0}^{\omega_{c}} d \omega e^{-\frac{\omega}{t}} \rho_{\Pi}^{\mathrm{OPE}}(\omega) \quad \begin{aligned}
& \text { [Broadhurst,Grozin '92; Bagan, } \\
& \text { Ball, Braun,Dosch '92; Neubert '92] }
\end{aligned}
$$

Reference	Method	N_{f}	$f_{B^{+}}(\mathrm{MeV})$	$f_{B_{s}}(\mathrm{MeV})$	$f_{B_{s}} / f_{B^{+}}$
ETM 13 [85] ${ }^{*, \dagger}$	LQCD	$2+1+1$	$196(9)$	$235(9)$	$1.201(25)$
HPQCD 13 [86]	LQCD	$2+1+1$	$184(4)$	$224(5)$	$1.217(8)$
Average	LQCD	$2+1+1$	$184(4)$	$224(5)$	$1.217(8)$
Aoki 14 [87] *, \ddagger	LQCD	$2+1$	$218.8(6.5)(30.8)$	$263.5(4.8)(36.7)$	$1.193(20)(44)$
RBC/UKQCD 14 [88]	LQCD	$2+1$	$195.6(6.4)(13.3)$	$235.4(5.2)(11.1)$	$1.223(14)(70)$
HPQCD 12 [89] *	LQCD	$2+1$	$191(1)(8)$	$228(3)(10)$	$1.188(12)(13)$
HPQCD 12 [89] *	LQCD	$2+1$	$189(3)(3)^{\star}$	-	-
HPQCD 11 [90]	LQCD	$2+1$	-	$225(3)(3)$	-
Fermilab/MILC 11 [69]	LQCD	$2+1$	$196.9(5.5)(7.0)$	$242.0(5.1)(8.0)$	$1.229(13)(23)$
Average				$189.9(4.2)$	$228.6(3.8)$
Our average	LQCD	$2+1$	Both	$187.1(4.2)$	$227.2(3.4)$
Wang 15 [71] §	QCD SR		$194(15)$	$1.210(15)$	
Baker 13 [91]	QCD SR		$186(14)$	$231(16)$	$1.215(7)$
Lucha 13 [92]	QCD SR		$192.0(14.6)$	$228.0(19.8)$	$1.19(10)$
Gelhausen 13 [72]	QCD SR		$207\left({ }_{-9}^{+17}\right)$	$242\left({ }_{-12}^{+17)}\right.$	$1.194(4)$
Narison 12 [73]	QCD SR		$206(7)$	$234(5)$	$1.14\left({ }_{-4}^{+3}\right)$
Hwang 09 [75]	LFQM		-	$270.0(42.8)$	$1.32(8)$

Sum rules are in good agreement with lattice, but have larger uncertainties

HQET sum rules: Bag parameters

Consider the three-point correlator:

$$
K_{\tilde{Q}}\left(\omega_{1}, \omega_{2}\right)=\int d^{d} x_{1} d^{d} x_{2} e^{i p_{1} \cdot x_{1}-i p_{2} \cdot x_{2}}\langle 0| \mathrm{T}\left[\tilde{j}_{+}\left(x_{2}\right) \tilde{Q}(0) \tilde{j}_{-}\left(x_{1}\right)\right]|0\rangle
$$

Going through the same steps one obtains the sum rule:
[Chetyrkin, Kataev, Krasulin, Pivovarov '01]

$$
\begin{gathered}
F^{2}(\mu)\langle\tilde{Q}(\mu)\rangle e^{-\frac{\bar{\Lambda}}{t_{1}}-\frac{\bar{\Lambda}}{t_{2}}}=\int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}} \rho_{\tilde{Q}}^{\mathrm{OPE}}\left(\omega_{1}, \omega_{2}\right) \\
\rho_{\tilde{Q}}^{\mathrm{OPE}}\left(\omega_{1}, \omega_{2}\right)=\rho_{\tilde{Q}}^{\mathrm{pert}}\left(\omega_{1}, \omega_{2}\right)+\rho_{\tilde{Q}}^{\langle\bar{q} q\rangle}\left(\omega_{1}, \omega_{2}\right)\langle\bar{q} q\rangle+\rho_{\tilde{Q}}^{\left\langle\alpha_{s} G^{2}\right\rangle}\left(\omega_{1}, \omega_{2}\right)\left\langle\alpha_{s} G^{2}\right\rangle+\ldots
\end{gathered}
$$

In practice we compute the correlator and then take its double discontinuity

Three-point correlator

NLO accuracy in the perturbative part requires a three-loop calculation:

Master integrals:
[Grozin, Lee '08]
Operator Q1:
[Grozin, Mannel,
Klein, Pivovarov '16]

All dimension six operators:
[Kirk, Lenz, TR '17]

Three-point correlator

NLO accuracy in the perturbative part requires a three-loop calculation:

Master integrals: [Grozin, Lee '08]
Operator Q1:
[Grozin, Mannel,
Klein, Pivovarov '16]

All dimension six operators:
[Kirk, Lenz, TR '17]

$$
\rho_{\tilde{Q}_{i}}^{\mathrm{pert}}\left(\omega_{1}, \omega_{2}\right)=A_{\tilde{Q}_{i}} \rho_{\Pi}\left(\omega_{1}\right) \rho_{\Pi}\left(\omega_{2}\right)+\frac{\omega_{1}^{2} \omega_{2}^{2}}{\pi^{4}} \frac{\alpha_{s}}{4 \pi} r_{\tilde{Q}_{i}}\left(\frac{\omega_{2}}{\omega_{1}}, L_{\omega}\right)
$$

Non-factorizable contribution

Factorizable contribution, reproduces the vacuum saturation approximation $B=1$ (VSA)

$$
\begin{aligned}
& r_{\tilde{Q}_{1}}\left(x, L_{\omega}\right)=8-\frac{a_{2}}{2}-\frac{8 \pi^{2}}{3} \\
& r_{\tilde{Q}_{2}}\left(x, L_{\omega}\right)=25+\frac{a_{1}}{2}-\frac{4 \pi^{2}}{3}+6 L_{\omega}+\phi(x) \\
& r_{\tilde{Q}_{4}}\left(x, L_{\omega}\right)=16-\frac{a_{3}}{4}-\frac{4 \pi^{2}}{3}+3 L_{\omega}+\frac{\phi(x)}{2} \\
& r_{\tilde{Q}_{5}}\left(x, L_{\omega}\right)=29-\frac{a_{3}}{2}-\frac{8 \pi^{2}}{3}+6 L_{\omega}+\phi(x)
\end{aligned}
$$

Sum rule for Bag parameters

Formulate sum rule for deviation $\Delta B_{\tilde{Q}}(\mu)=B_{\tilde{Q}}(\mu)-1$ from the HQET Bag parameters $\langle\tilde{Q}(\mu)\rangle=A_{\tilde{Q}} F^{2}(\mu) B_{\tilde{Q}}(\mu)$.

$$
\begin{aligned}
\Delta B_{\tilde{Q}_{i}} & =\frac{1}{A_{\tilde{Q}_{i}} F(\mu)^{4}} \int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{\frac{\bar{\Lambda}-\omega_{1}}{t_{1}}+\frac{\bar{\Lambda}-\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}\left(\omega_{1}, \omega_{2}\right) \\
& =\frac{1}{A_{\tilde{Q}_{i}}} \frac{\int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}\left(\omega_{1}, \omega_{2}\right)}{\left(\int_{0}^{\omega_{c}} d \omega_{1} e^{-\frac{\omega_{1}}{t_{1}}} \rho_{\Pi}\left(\omega_{1}\right)\right)\left(\int_{0}^{\omega_{c}} d \omega_{2} e^{-\frac{\omega_{2}}{t_{2}}} \rho_{\Pi}\left(\omega_{2}\right)\right)} .
\end{aligned}
$$

Sum rule for Bag parameters

Formulate sum rule for deviation $\Delta B_{\tilde{Q}}(\mu)=B_{\tilde{Q}}(\mu)-1$ from the HQET Bag parameters $\langle\tilde{Q}(\mu)\rangle=A_{\tilde{Q}} F^{2}(\mu) B_{\tilde{Q}}(\mu)$.

$$
\begin{aligned}
\Delta B_{\tilde{Q}_{i}} & =\frac{1}{A_{\tilde{Q}_{i}} F(\mu)^{4}} \int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{\frac{\overline{-}-\omega_{1}}{t_{1}}+\frac{\bar{\Lambda}-\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}\left(\omega_{1}, \omega_{2}\right) \\
& =\frac{1}{A_{\tilde{Q}_{i}}} \frac{\int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}} \Delta \rho_{\tilde{Q}_{i}}\left(\omega_{1}, \omega_{2}\right)}{\left(\int_{0}^{\omega_{c}} d \omega_{1} e^{-\frac{\omega_{1}}{t_{1}}} \rho_{\Pi}\left(\omega_{1}\right)\right)\left(\int_{0}^{\omega_{c}} d \omega_{2} e^{-\frac{\omega_{2}}{t_{2}}} \rho_{\Pi}\left(\omega_{2}\right)\right)} .
\end{aligned}
$$

Dispersion relation is not violated by arbitrary analytical weight function (Note of caution: Duality breaks down for pathological choices)

$$
F^{4}(\mu) e^{-\frac{\bar{\Lambda}}{t_{1}}-\frac{\bar{\lambda}}{t_{2}}} w(\bar{\Lambda}, \bar{\Lambda})=\int_{0}^{\omega_{c}} d \omega_{1} d \omega_{2} e^{-\frac{\omega_{1}}{t_{1}}-\frac{\omega_{2}}{t_{2}}} w\left(\omega_{1}, \omega_{2}\right) \rho_{\Pi}\left(\omega_{1}\right) \rho_{\Pi}\left(\omega_{2}\right)+\ldots .
$$

With an appropriate choice we obtain an analytic result for the pert contribution:

$$
\Delta B_{\tilde{Q}_{i}}^{\text {pert }}\left(\mu_{\rho}\right)=\frac{4}{N_{c}^{2} A_{\tilde{Q}_{i}}} \frac{\alpha_{s}\left(\mu_{\rho}\right)}{4 \pi} r_{\tilde{Q}_{i}}\left(1, \log \frac{\mu_{\rho}^{2}}{4 \bar{\Lambda}^{2}}\right) .
$$

Results

- Determine HQET Bag parameters at low scale $\mu_{\rho} \sim 1.5 \mathrm{GeV}$ from sum rules
- Run up to $\mu_{m} \sim m_{b}$ and match to QCD Bag parameters at NLO
- Detailed analysis performed in 1711.02100

[Kirk, Lenz, TR '17]

B-mixing observables

Update of 1711.02100 with CKM elements from CKMFitter and new decay constants from [FNAL/MILC '17]:

$$
\begin{aligned}
& \Delta M_{s}^{\exp }=(17.757 \pm 0.021) \mathrm{ps}^{-1}, \\
& \Delta M_{s}^{S M}=(18.3 \pm 1.2 \text { (had.) } \\
& \pm 0.1 \text { (scale) } \\
& { }_{-0.5}^{+0.2} \text { (param.)) } \mathrm{ps}^{-1} \text {, } \\
& \Delta \Gamma_{s}^{\exp }=(0.090 \pm 0.005) \mathrm{ps}^{-1} \text {, } \\
& \Delta \Gamma_{s}^{\mathrm{PS}}=(0.087 \pm 0.020 \text { (had.) } \\
& { }_{-0.020}^{+0.008} \text { (scale) } \\
& { }_{-0.003}^{+0.001} \text { (param.)) } \mathrm{ps}^{-1} \text {, } \\
& a_{\mathrm{sl}}^{s, \exp }=(-60 \pm 280) \cdot 10^{-5} \text {, } \\
& a_{\mathrm{sl}}^{s, \mathrm{PS}}=(1.8 \pm 0.0 \text { (had.) } \\
& { }_{-0.1}^{+0.0} \text { (scale) } \\
& \pm 0.1 \text { (param.)) } \cdot 10^{-5} \text {, }
\end{aligned}
$$

B-mixing observables

Update of 1711.02100 with CKM elements from CKMFitter and new decay constants from [FNAL/MILC '17]:

$$
\begin{aligned}
& \Delta M_{d}^{\exp }=(0.5065 \pm 0.0019) \mathrm{ps}^{-1} \\
& \Delta M_{d}^{\mathrm{SM}}=(0.53 \pm 0.03 \text { (had.) } \\
& \pm 0.00 \text { (scale) } \\
&{ }_{-0.02}^{+0.01} \text { (param.) } \mathrm{ps}^{-1}, \\
& \\
& \Delta \Gamma_{d}^{\exp }=(-1.3 \pm 6.6) \cdot 10^{-3} \mathrm{ps}^{-1} \\
& \Delta \Gamma_{d}^{\mathrm{PS}}=(2.5 \pm 0.6 \text { (had.) } \\
&{ }_{-0.6}^{+0.2} \text { (scale) } \\
& \pm 0.1 \text { (param.) }) \cdot 10^{-3} \mathrm{ps}^{-1}, \\
& \\
& a_{\mathrm{sl}}^{d, \exp }=(-21 \pm 17) \cdot 10^{-4}, \\
& a_{\mathrm{sl}}^{d, \mathrm{PS}}=(-4.2 \pm 0.1(\text { had. }) \\
&{ }_{-0.1}^{+0.2} \text { (scale) } \\
& \pm 0.2(\text { param. })) \cdot 10^{-4},
\end{aligned}
$$

B meson lifetimes

$\Delta B=0$ Bag parameters
[Kirk, Lenz, TR '17]

$$
\begin{array}{ll}
\frac{\tau\left(B^{+}\right)}{\tau\left(B^{0}\right)} & \left.\right|_{\exp }=1.076 \pm 0.004 \\
\left.\frac{\tau\left(B^{+}\right)}{\tau\left(B^{0}\right)}\right|_{\mathrm{PS}}=1.082 \pm 0.021(\text { had. })_{-0.015}^{+0.000} \text { (scale) } \pm 0.006(\text { param. }) \\
\frac{\tau\left(B_{s}^{0}\right)}{\tau\left(B^{0}\right)} \\
\left.\frac{\tau\left(B_{s}^{0}\right)}{\tau\left(B^{0}\right)}\right|_{\mathrm{exp}}=0.994 \pm 0.004, \\
& =0.9994 \pm 0.0014 \text { (had.) } \pm 0.0006(\text { scale }) \pm 0.0020\left(1 / m_{b}^{4}\right),
\end{array}
$$

Heavy quark expansion in charm?

B-physics: HQE is well established approach, $\Lambda / m_{b} \sim 0.2 \ll 1$

D-physics: HQE commonly dismissed, $\Lambda / m_{c} \sim 0.2 m_{b} / m_{c} \sim 0.7 \approx 1$
BUT: HQE is really an expansion in $\Lambda /$ momentum release

- $\Delta \Gamma_{s}$ dominated by $\mathrm{D}_{s}^{(*)+} D_{s}^{(*)-}$ final state, momentum release $\sim 3.5 \mathrm{GeV}$
- D decays dominated by $\mathrm{K} \pi^{(1-3)}$ final state, momentum release $\sim 1.7 \mathrm{GeV}$
- expected expansion parameter is of the order 0.4

Small enough for convergence?

Heavy quark expansion in charm?

B-physics: HQE is well established approach, $\Lambda / m_{b} \sim 0.2 \ll 1$

D-physics: HQE commonly dismissed, $\Lambda / m_{c} \sim 0.2 m_{b} / m_{c} \sim 0.7 \approx 1$
BUT: HQE is really an expansion in $\Lambda /$ momentum release

- $\Delta \Gamma_{s}$ dominated by $\mathrm{D}_{s}^{(*)+} D_{s}^{(*)-}$ final state, momentum release $\sim 3.5 \mathrm{GeV}$
- D decays dominated by $\mathrm{K} \pi^{(1-3)}$ final state, momentum release $\sim 1.7 \mathrm{GeV}$
- expected expansion parameter is of the order 0.4

Small enough for convergence?

Matrix elements

- Good agreement with lattice (using lattice results for the decay constant)
- Larger uncertainties due to lower matching scale
- Also: first determination of $\Delta C=0$ matrix elements in 1711.02100

D lifetimes as test of HQE

HQE provides good description of lifetimes in charm sector:

$$
\begin{aligned}
& \left.\frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}\right|_{\exp }=2.536 \pm 0.019 \\
& \left.\frac{\bar{\tau}\left(D_{s}^{+}\right)}{\tau\left(D^{0}\right)}\right|_{\exp }=1.292 \pm 0.019
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}\right|_{\mathrm{HQE}}=2.7_{-0.8}^{+0.7}, \quad[\text { Kirk, Lenz, TR '17] } \\
& \left.\frac{\bar{\tau}\left(D_{s}^{+}\right)}{\tau\left(D^{0}\right)}\right|_{\mathrm{HQE}}=1.19 \pm 0.13 . \quad[\text { Lenz, TR '13] }
\end{aligned}
$$

Good convergence:
NLO QCD +28\%, 1/mc -34\%.
Good behaviour under scale variation above about 1 GeV .

Conclusions \& outlook

- Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.
- The HQE is in terrific shape. Lifetimes even look promising in the charm sector.
- Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'.
[cf. talk by M. Kirk]
- First state-of-the-art results for $\Delta F=0$ matrix elements. Confirmation from lattice would be interesting.

SINCE YEARS OF BEGGING DID NOT HELP - IT’S TIME TO PROVOKE

Lifetimes are too heavy for lattice physicists!
The strongest lattice researcher alive

Arbitrary sum rule researcher

Matrix elements for lifetimes of HEAVY mesons
[Lenz Implications '17]

Conclusions \& outlook

- Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.
- The HQE is in terrific shape. Lifetimes even look promising in the charm sector.
- Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'.
[cf. talk by M. Kirk]
- First state-of-the-art results for $\Delta F=0$ matrix elements.

Confirmation from lattice would be interesting.

- NNLO QCD-HQET matching calculations can significantly decrease uncertainties for dimension-six operators. first step: [Grozin, Mannel, Pivovarev '17]
- Uncertainties in decay rate difference and lifetimes can be reduced considerably by a sum rule determination of the dimension seven matrix elements.

Uncertainties

$\Delta B=2$	$\bar{\Lambda}$	intrinsic SR	condensates	μ_{ρ}	$1 / m_{b}$	μ_{m}	a_{i}
$\bar{B}_{Q_{1}}$	${ }_{-0.002}^{+0.001}$	± 0.018	± 0.004	${ }_{-0.022}^{+0.011}$	± 0.010	${ }_{-0.039}^{+0.045}$	${ }_{-0.007}^{+0.007}$
$\bar{B}_{Q_{2}}$	${ }_{-0.017}^{+0.014}$	∓ 0.020	± 0.004	${ }_{-0.019}^{+0.012}$	± 0.010	${ }_{-0.062}^{+0.071}$	${ }_{-0.015}^{+0.015}$
$\bar{B}_{Q_{3}}$	${ }_{-0.074}^{+0.060}$	± 0.107	± 0.023	${ }_{-0.008}^{+0.016}$	± 0.010	${ }_{-0.069}^{+0.086}$	${ }_{-0.052}^{+0.053}$
$\bar{B}_{Q_{4}}$	${ }_{-0.006}^{+0.007}$	± 0.021	± 0.011	${ }_{-0.003}^{+0.003}$	± 0.010	${ }_{-0.079}^{+0.088}$	${ }_{-0.006}^{+0.005}$
$\bar{B}_{Q_{5}}$	${ }_{-0.015}^{+0.0019}$	± 0.018	± 0.009	${ }_{-0.006}^{+0.004}$	± 0.010	${ }_{-0.068}^{+0.077}$	${ }_{-0.012}^{+0.012}$

$\Delta B=0$	$\bar{\Lambda}$	intrinsic SR	condensates	μ_{ρ}	$1 / m_{b}$	μ_{m}	a_{i}
\bar{B}_{1}	${ }_{-0.002}^{+0.003}$	± 0.019	± 0.002	${ }_{-0.002}^{+0.002}$	± 0.010	${ }_{-0.052}^{+0.000}$	${ }_{-0.003}^{+0.002}$
\bar{B}_{2}	${ }_{-0.001}^{+0.001}$	∓ 0.020	± 0.002	${ }_{-0.001}^{+0.000}$	± 0.010	${ }_{-0.076}^{+0.004}$	${ }_{-0.002}^{+0.001}$
$\bar{\epsilon}_{1}$	${ }_{-0.001}^{+0.006}$	± 0.022	± 0.003	${ }_{-0.003}^{+0.003}$	± 0.010	${ }_{-0.012}^{+0.001}$	${ }_{-0.007}^{+0.000}$
$\bar{\epsilon}_{2}$	${ }_{-0.005}^{+0.005}$	± 0.017	± 0.003	${ }_{-0.001}^{+0.002}$	± 0.010	${ }_{-0.002}^{+0.001}$	${ }_{-0.004}^{+0.003}$

Uncertainties

$\Delta C=2$	$\bar{\Lambda}$	intrinsic SR	condensates	μ_{ρ}	$1 / m_{c}$	μ_{m}	a_{i}
$\bar{B}_{Q_{1}}$	${ }_{-0.002}^{+0.001}$	± 0.013	± 0.003	${ }_{-0.021}^{+0.009}$	± 0.030	${ }_{-0.021}^{+0.039}$	± 0.003
$\bar{B}_{Q_{2}}$	${ }_{-0.011}^{+0.011}$	∓ 0.015	± 0.003	${ }_{-0.016}^{+0.010}$	± 0.030	${ }_{-0.050}^{+0.092}$	± 0.012
$\bar{B}_{Q_{3}}$		${ }_{-0.045}^{+0.037}$	± 0.059	± 0.013	${ }_{-0.016}^{+0.016}$	± 0.030	${ }_{-0.059}^{+0.116}$
$\bar{B}_{Q_{4}}$	${ }_{-0.005}^{+0.006}$	± 0.017	± 0.009	${ }_{-0.003}^{+0.003}$	± 0.030	${ }_{-0.071}^{+0.131}$	± 0.004
$\bar{B}_{Q_{5}}$	${ }_{-0.012}^{+0.014}$	± 0.014	± 0.007	${ }_{-0.005}^{+0.004}$	± 0.030	${ }_{-0.069}^{+0.127}$	± 0.004

$\Delta C=0$	$\bar{\Lambda}$	intrinsic SR	condensates	μ_{ρ}	$1 / m_{c}$	μ_{m}	a_{i}
\bar{B}_{1}	${ }_{-0.003}^{+0.004}$	± 0.017	± 0.002	${ }_{-0.002}^{+0.002}$	± 0.030	${ }_{-0.037}^{+0.068}$	${ }_{-0.005}^{+0.003}$
\bar{B}_{2}	${ }_{-0.000}^{+0.001}$	∓ 0.015	± 0.001	${ }_{-0.000}^{+0.000}$	± 0.030	${ }_{-0.065}^{+0.120}$	${ }_{-0.001}^{+0.000}$
$\bar{\epsilon}_{1}$	${ }_{-0.008}^{+0.007}$	± 0.024	± 0.004	${ }_{-0.004}^{+0.003}$	± 0.030	${ }_{-0.022}^{+0.012}$	${ }_{-0.008}^{+0.006}$
$\bar{\epsilon}_{2}$	${ }_{-0.004}^{+0.003}$	± 0.011	± 0.002	${ }_{-0.001}^{+0.001}$	± 0.030	${ }_{-0.000}^{+0.000}$	${ }_{-0.002}^{+0.001}$

Uncertainties

	$\Delta M_{s}^{\mathrm{SM}}\left[\mathrm{ps}^{-1}\right]$	$\Delta \Gamma_{s}^{\mathrm{PS}}\left[\mathrm{ps}^{-1}\right]$	$a_{\text {sl }}^{s, \mathrm{PS}}\left[10^{-5}\right]$		$\Delta M_{d}^{\mathrm{SM}}\left[\mathrm{ps}^{-1}\right]$	$\Delta \Gamma_{d}^{\mathrm{PS}}\left[10^{-3} \mathrm{ps}^{-1}\right]$	$a_{\mathrm{sl}}^{d, \mathrm{PS}}\left[10^{-4}\right]$
$\bar{B}_{Q_{1}}$	± 1.1	± 0.005	± 0.01	$\bar{B}_{Q_{1}}$	${ }_{-0.03}^{+0.04}$	± 0.16	± 0.02
$\bar{B}_{Q_{3}}$	± 0.0	± 0.005	± 0.01	$\bar{B}_{Q_{3}}$	± 0.00	${ }_{-0.16}^{+0.17}$	± 0.03
$\bar{B}_{R_{0}}$	± 0.0	± 0.003	± 0.00	$\bar{B}_{R_{0}}$	± 0.00	± 0.11	± 0.01
$\bar{B}_{R_{1}}$	± 0.0	± 0.000	± 0.00	$\bar{B}_{R_{1}}$	± 0.00	± 0.01	± 0.00
$\bar{B}_{R_{1}^{\prime}}$	± 0.0	± 0.000	± 0.00	$\bar{B}_{R_{1}^{\prime}}$	± 0.00	± 0.01	± 0.00
$\bar{B}_{R_{2}}$	± 0.0	± 0.016	± 0.00	$\bar{B}_{R_{2}}$	± 0.00	± 0.54	± 0.00
$\bar{B}_{R_{3}}$	± 0.0	± 0.001	± 0.02	$\bar{B}_{R_{3}}$	± 0.00	± 0.00	± 0.04
$\bar{B}_{R_{3}^{\prime}}$	± 0.0	± 0.000	± 0.05	$\bar{B}_{R_{3}^{\prime}}$	± 0.00	± 0.01	± 0.09
$f_{B_{s}}$	± 0.5	± 0.002	± 0.00	f_{B}	± 0.03	± 0.11	± 0.00
μ_{1}	± 0.0	${ }_{-0.018}^{+0.007}$	${ }_{-0.08}^{+0.04}$	μ_{1}	± 0.00	${ }_{-0.62}^{+0.24}$	${ }_{-0.07}^{+0.17}$
μ_{2}	± 0.1	${ }_{-0.002}^{+0.000}$	± 0.01	μ_{2}	± 0.00	+0.00 -0.08	${ }_{-0.03}^{+0.01}$
m_{b}	± 0.0	${ }_{-0.001}^{+0.000}$	± 0.01	m_{b}	± 0.00	${ }_{-0.03}^{+0.01}$	${ }_{-0.03}^{+0.01}$
m_{c}	± 0.0	${ }_{-0.001}^{+0.000}$	± 0.06	m_{c}	± 0.00	${ }_{-0.02}^{+0.01}$	± 0.13
α_{s}	± 0.0	± 0.000	± 0.04	α_{s}	± 0.00	± 0.01	± 0.08
CKM	$\begin{gathered} +1.4 \\ { }_{-1.3}^{+1.4} \end{gathered}$	± 0.006	$\begin{aligned} & { }_{-0.22}^{+0.21} \end{aligned}$	CKM	± 0.08	$\begin{aligned} & +{ }_{-0.37}^{+0.38} \\ & \hline \end{aligned}$	$\begin{aligned} & { }_{-0.44}^{+0.47} \end{aligned}$

Uncertainties

\bar{B}_{1}	\bar{B}_{2}	$\bar{\epsilon}_{1}$	$\bar{\epsilon}_{2}$	ρ_{3}	ρ_{4}	σ_{3}	σ_{4}
± 0.002	± 0.000	${ }_{-0.015}^{+0.016}$	± 0.004	± 0.001	± 0.000	± 0.013	± 0.000
f_{B}	μ_{1}	μ_{0}	m_{b}	m_{c}	α_{s}	CKM	
${ }_{-0.003}^{+0.004}$	${ }_{-0.013}^{+0.000}$	${ }_{-0.006}^{+0.000}$	${ }_{-0.001}^{+0.000}$	± 0.000	± 0.002	± 0.006	

Table 8: Individual errors for the ratio $\tau\left(B^{+}\right) / \tau\left(B^{0}\right)$ in the PS mass scheme.

\bar{B}_{1}	\bar{B}_{2}	$\bar{\epsilon}_{1}$	$\bar{\epsilon}_{2}$	ρ_{3}	ρ_{4}	σ_{3}	σ_{4}
${ }_{-0.05}^{+0.07}$	± 0.00	${ }_{-0.47}^{+0.52}$	± 0.017	± 0.05	± 0.00	± 0.46	± 0.00
f_{B}	μ_{1}	μ_{0}	m_{c}	m_{s}	α_{s}	CKM	
± 0.08	${ }_{-0.40}^{+0.07}$	${ }_{-0.21}^{+0.08}$	± 0.08	± 0.00	${ }_{0.06}^{+0.07}$	± 0.00	

Table 9: Individual errors for the ratio $\tau\left(D^{+}\right) / \tau\left(D^{0}\right)$ in the PS mass scheme.

