Kaon Flavour News

Andrzej J. Buras
(Technical University Munich, TUM-IAS)

Lyon April 2018

Overture

Stars of KAON Flavour Physics

$$
\begin{aligned}
& \varepsilon_{\mathrm{K},}, \Delta \mathrm{M}_{\mathrm{K}} \quad \varepsilon^{\prime / \varepsilon} \quad \mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v} \quad \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v} \\
& \mathrm{~K}_{\mathrm{L}, \mathrm{~s}} \rightarrow \mu^{+} \mu^{-} \quad \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}^{+} \mathrm{I}^{-} \quad \Delta \mathrm{I}=\mathbf{1 / 2} \text { Rule }
\end{aligned}
$$

They all can give some information about very short distance scales but to identify new physics, correlations with $B_{s, d}$ and D observables, EDMs, Lepton physics crucial

In particular if we want to reach Zeptouniverse without any direct hints from the LHC

$$
\mathbf{B} \rightarrow \mathbf{K}^{*} \gamma
$$

AJB, Girrbach-Noe 1306.3775

$$
\begin{array}{l|l}
\mathrm{B} \rightarrow \mathbf{X}_{\mathrm{s}} \boldsymbol{\gamma} & \mathbf{B}^{+} \rightarrow \tau^{+} \boldsymbol{v}_{\tau} \\
\mathbf{B} \rightarrow \mathrm{D}\left(\mathrm{D}^{*}\right) \tau \nu
\end{array}
$$

AJB 1505.00618

Impact of QCD at SD and LD Scales

(K-physics)
SD Fully under control: NLO + NNLO
AJB: „Climbing NLO and NNLO Summits of Weak Decays"
(1102.5650; last update 2014)
(Munich, Rome + Gorbahn, Brod, (early 1990s) Haisch, Jäger, Nierste, Cerda-Sevilla)
LD
Lattice QCD (ETM, SWME, RBC-UKQCD, ...)
(Numerical sophisticated tedious calculations lasting many years)

Plan for next 38 min

Dual QCD News

1 Dual QCD

Large \mathbf{N} QCD

Gerard 't Hooft (1974)

Edward Witten (1979, 1980)

At Large N QCD becomes a theory of weakly interacting mesons
with coupling $\frac{1}{f_{\pi}^{2}} \sim \frac{1}{N}$

In the strict Large N limit QCD becomes a free theory of mesons.

Dual QCD Approach for Weak Decays

Basic Structure of DQCD for $\mathbf{K} \rightarrow \pi \pi, \mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ mixing

($\varepsilon^{\prime} / \varepsilon, \varepsilon, \Delta I=1 / 2$ Rule, ΔM_{K})

SM and BSM Operators

Reviews: 1401.1385, 1408.4820

RG Evolution
$\alpha_{s}, \alpha_{2}, \alpha_{1}$ top Yukawa
$\alpha_{s}, \alpha_{\text {QED }}$
Non-Factorizable contributions

SM and BSM operators
Factorization Scale
for hadronic matrix elements

Crucial strong dynamics Responsible for $\Delta I=1 / 2$ Rule, $\varepsilon^{\prime} / \varepsilon, \varepsilon, \Delta M_{K}, K \rightarrow \pi \pi$ in general.

The Main Role of DQCD

1. Efficient approximate method for obtaining results for non-leptonic decays: years, even decades before Lattice QCD.

2
Giving insight in numerical results obtained by Lattice QCD at 2-3 GeV.

Progress in LQCD
(2012 \rightarrow)

The only existing QCD method allowing to study analytically the dominant dynamics between m_{K} and 1 GeV .

```
MESON EVOLUTION
```

The pattern of operator mixing found to agree with SD mixing. both for SM and BSM operators.

Meson Evolution

Loops with a physical cutt-off \wedge

(a)

(c)

(b)

(d)

Very different philosophy from Chiral PTh
No dimensional regularisation !!!

$\Delta I=1 / 2$ Rule

$$
R=\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \approx 22.4
$$

Since 1955

Gell-Mann Pais
$R=\sqrt{2}$ in Fermi-Theory (No QCD)

1976 QCD Penguins (Shifman et al) (Fit hadronic matrix elements

$$
\text { at } \left.\mu=0.3 \mathrm{GeV} \rightarrow \varepsilon^{\prime} / \varepsilon \sim 0\left(10^{-2}\right)\right)
$$

(Gilman + Wise)

1986 Dual QCD (BBG)

(Main	Octet Enhancement including LD part (Meson Evolution)			
Dynamics	QCD Penguins	10\%		FSI ? (Pich) New Physics ?
Behind 2014: $\Delta I=1 / 2$ Rule)			$R=16.0 \pm 1.5$	
				(1404.3824, G')
2015	RBC-UKQCD	$R=31 \pm 11$		AJB, De Fazio, Girrbach
(2012)	Confirmation of	Octet Enhance	nent	

$\hat{\mathbf{B}}_{\mathrm{K}}$ Parameter for $\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ Mixing, ε_{K}

1986 Donoghe et al Pich + Rafael $\hat{\mathrm{B}}_{\mathrm{k}} \approx 0.33 \quad \hat{\mathrm{~B}}_{\mathrm{K}} \approx 0.4$ Lattice QCD $\quad \hat{\mathrm{B}}_{\mathrm{K}} \approx 1$

BBG

$$
\hat{\mathrm{B}}_{\mathrm{K}}=0.67 \pm 0.07
$$

$$
\hat{\mathbf{B}}_{\mathrm{K}}=0.75 \quad \text { (Large } \mathrm{N} \text { limit) }
$$

BBG

$$
\hat{\mathbf{B}}_{\mathrm{k}}=0.73 \pm 0.02
$$

Lattice QCD: $\hat{\mathbf{B}}_{\mathrm{K}}=0.766 \pm 0.010$
Gérard: $\hat{\mathbf{B}}_{\mathrm{K}}<0.75$

QCD and Electroweak Penguin Matrix Elements

BBG strict Large \mathbf{N} limit

$$
B_{6}^{1 / 2}=B_{8}^{3 / 2}=1 \quad\left(\mu \approx 0\left(m_{\pi}\right)\right)
$$

AJB + Gérard 1507.06326

Including 1/N

$$
B_{6}^{1 / 2}<B_{8}^{3 / 2}<1
$$ (meson evolution for B_{6}, B_{8})

at $\mu \geq 1 \mathrm{GeV}$

More about it later.

2018 Results in DQCD

: BSM hadronic Matrix elements
1.

> Matrix elements of chromomagnetic penguins $\begin{array}{ll}\text { AJB + Gérard } \quad 1803.08052 \quad & \text { (First on-shell } K \rightarrow \pi \pi \\ \text { calculation to date) }\end{array}$

Confirmation of $\mathrm{K} \rightarrow \pi$ matrix element $B_{\text {СМО }} \approx 1 / 3$ by ETM collaboration 1712.09824

Much smaller
than early
estimates in
chiral quark
model

Explanation of BSM B_{i} parameters ($\mathrm{K}^{0}-\bar{K}^{0}$ Mixing) obtained by Lattice QCD 1804.02401 (AJB + Gérard)

More Results this Summer

Section 2 $\varepsilon^{\prime} / \varepsilon$ strikes back

2015 Anatomy of $\varepsilon / \varepsilon$: 1507.06345

AJB

AJB

Martin Gorbahn

Matthias Jamin

Large N news 1507.06326

FSI
1603.05686

$\varepsilon^{\prime} / \varepsilon$ strikes back (CP-Violation in $\left.\mathrm{K}_{\mathrm{L}} \rightarrow \pi \pi\right)$

New results on hadronic matrix elements of QCD penguin $\left(B_{6}\right)$ and electroweak penguin $\left(B_{8}\right)$ operators

Large \mathbf{N} approach
to QCD

Upper Bound on $\varepsilon^{\prime} / \varepsilon$ in the Standard Model
Supported by Lattice QCD

Anatomy of $\varepsilon^{\prime} / \varepsilon$ in the Standard Model
$: \quad B_{6}=0.57 \pm 0.19 \quad B_{8}=0.76 \pm 0.05 \quad$ RBC-UKQCD

AJB, Gorbahn, Jäger, Jamin (1507.06345)

AJB + Gérard (1507.06326)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}=(6.0 \pm 2.4) \cdot 10^{-4} \text { for } B_{6}=B_{8}=0.76
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \cdot 10^{-4} \quad \begin{aligned}
& \text { Possible } \\
& \text { New Physics }
\end{aligned}
$$

Z' general (AJB, Buttazzo, Knegjens, 1507.08672)
Littlest Higgs Model (Blanke, AJB, Recksiegel, 1507.06316)
331 Models (AJB, De Fazio, 1512.02869,1604.02344)
New Strategy (AJB, 1601.00005)
Vector-like Quarks (Bobeth, AJB, Celis, Jung, 1609.04783)
Leptoquarks (Bobeth, AJB, 1712.01295)

2016 Standard Model Results

Teppei Kitahara

Ulrich Nierste

Paul Tremper

NLO

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=(1 \pm 5) \cdot 10^{-4}
$$

Ahmet Kokulu

New TUM
Postdoc

Four dominant contributions to $\varepsilon^{\prime} / \varepsilon$ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

Assumes that ReA_{0} and ReA_{2} ($\Delta I=1 / 2$ Rule) fully described by SM (includes isospin breaking corrections)

Extracted from
RBC-UKQCD : $B_{6}^{(1 / 2)}=0.57 \pm 0.19 \quad B_{8}^{(3 / 2)}=0.76 \pm 0.05$

$$
\text { Why } B_{6}^{(1 / 2)}<B_{8}^{(3 / 2)}<1 \text { ? }
$$

and not $\quad B_{6}^{(1 / 2)}>1, \quad B_{8}^{(3 / 2)}<1 \quad \begin{gathered}\text { (Pallante, Pich... } \\ \text { 2000) }\end{gathered} \quad$ FSI

Answer in Large N (Dual QCD) Approach
 AJB + Gérard (1507.06326)

Before 2015 it was wrongly assumed that

$$
B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1 \text { at } \mu \approx 0(1 \mathrm{GeV})
$$

But $B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1$ is large N prediction

$$
\text { for } \mu=\mathrm{m}_{\pi} \text { not } \mu=0(1 \mathrm{GeV})
$$

Meson evolution $\mathrm{m}_{\pi} \rightarrow \mu=0(1 \mathrm{GeV})$ suppresses $B_{6}^{(1 / 2)}$ and $B_{8}^{(3 / 2)}$ below 1 and $B_{6}^{(1 / 2)}$ stronger than $B_{8}^{(3 / 2)}$ in accordance with quark evolution for $\mu>1 \mathrm{GeV}$

B_{6} and B_{8} in the Perturbative Regime (1993!)

AJB, Jamin, Lautenbacher, (9303284)

B_{6} and B_{8} decrease with increasing μ !
Note $B_{6}=B_{8}=1$ at $\mu=m_{c}$ wrong!!

Scale Dependence of B_{6} and B_{8}

AjB+ Gerard (1507.06326)

FSI in $\mathrm{K} \rightarrow \pi \pi$

AJB, Gérard 1603.05686

Relevant for $\Delta l=1 / 2$ Rule (in agreement with Pallante, Pich,...)
 Less important for $\varepsilon^{\prime} / \varepsilon$ (in variance with Pallante, Pich,...)

New application of dual QCD to $\mathrm{K} \rightarrow \pi \mathrm{I}^{+} I^{-}$ (Caluccio-Leskow, D’Ambrosio, Greynat, Nath, 1604.09721)
(see next talk)

As the existence of Meson Evolution has been questioned over last 30 years by some Chiral Experts by some Lattice Experts

Let me demonstrate its existence by considering BSM operators in $\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ Mixing)

Very good test!
: The controversal issue of Final State interactions is absent here !!! and four parameters to our disposal $B_{2}, B_{3}, B_{4}, B_{5}$

$\Delta S=2$ Operators in SUSY Basis

SM

$$
\mathbf{0}_{1}=\left(\overline{\mathbf{s}}^{\alpha} \gamma_{\mu} \mathbf{P}_{\mathrm{L}} \mathbf{d}^{\alpha}\right)\left(\overline{\mathbf{s}}^{\beta} \gamma_{\mu} \mathbf{P}_{\mathrm{L}} \mathrm{~d}^{\beta}\right) \rightarrow \mathbf{B}_{1}
$$

BSM

$$
\begin{aligned}
& \mathbf{0}_{2}=\left(\overline{\mathbf{s}}^{\alpha} \mathbf{P}_{\mathrm{L}} d^{\alpha}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{L}} d^{\beta}\right) \rightarrow B_{2} \\
& \mathbf{0}_{3}=\left(\overline{\mathbf{s}}^{\alpha} \mathbf{P}_{\mathrm{L}} d^{\beta}\right)\left(\overline{\mathbf{s}}^{\beta} P_{\mathrm{L}} d^{\alpha}\right) \rightarrow B_{3} \\
& \mathbf{0}_{4}=\left(\overline{\mathbf{s}}^{\alpha} \mathbf{P}_{\mathrm{L}} d^{\alpha}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{R}} d^{\beta}\right) \rightarrow B_{4} \\
& \mathbf{0}_{5}=\left(\overline{\mathbf{s}}^{\alpha} \mathrm{P}_{\mathrm{L}} d^{\beta}\right)\left(\overline{\mathbf{s}}^{\beta} \mathbf{P}_{\mathrm{R}} d^{\alpha}\right) \rightarrow B_{5}
\end{aligned}
$$

$$
\left\langle\mathbf{o}_{i}(\mu)\right\rangle \approx \frac{B_{i}(\mu)}{m_{s}^{2}(\mu)}
$$

$\mathrm{B}_{1}(0)=0.75 \Rightarrow \mathrm{~B}_{1}(0.7 \mathrm{GeV})=0.62 \underbrace{\|}_{\substack{\text { Gap } \\ \mathrm{N} \rightarrow \infty \\ \text { Meson Evolution }}} 0.61=\mathrm{B}_{1}(1 \mathrm{GeV}) \Leftarrow 0.53=\mathrm{B}_{1}(3 \mathrm{GeV})$

DQCD

 Explaining Values for $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$ from Lattice QCD(AJB + Gérard, 1804.02401)
(ETM15, SWME, RBC-QCD)

Important !

$$
\left\langle\mathbf{O}_{\mathrm{i}}(\mu)\right\rangle \approx \frac{B_{i}(\mu)}{\mathrm{m}_{\mathrm{s}}^{2}(\mu)}
$$

Similar to B_{6} and B_{8}

No FSI

Meson evolution Exhibited much clearer than in K $\rightarrow \pi \pi$

This insight in B_{i} values from Lattice has been obtained from DQCD without ANY input beyond $\boldsymbol{\Lambda} \approx \mathrm{m}_{\rho}$ (Only pseudoscalar masses, F_{K} and α_{QCD} involved)

No low-energy constants L_{i} etc. familiar from Chiral Pert. Th.

Question : Can this insight be obtained from Chiral Pert. Th. ?

$\varepsilon^{\prime} / \varepsilon$ anomaly is the largest anomaly in flavour physics !

Based on DQCD, not Lattice yet!

(A.J. Buras)

$\left(\varepsilon^{\prime} / \varepsilon\right)=\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}+\left(\varepsilon^{\prime} / \varepsilon\right)_{N P} \quad\left(\varepsilon^{\prime} / \varepsilon\right)_{N P}=K_{\varepsilon^{\prime}} \cdot 10^{-3}$

$$
\begin{aligned}
& 0.5<\kappa_{\varepsilon^{\prime}}<1.5 \\
&\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}<(6.0 \pm 2.4) \cdot 10^{-4} \\
& \hline\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \cdot 10^{-4}
\end{aligned} \quad \begin{gathered}
\text { Dual } \\
\text { QCD }
\end{gathered}
$$

Section 3

$\mathrm{K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\circ} v \bar{v}$ in the Standard Model

1503.02693

D.Buttazzo

J.Girrbach-Noe

Waiting for $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \nu \bar{v}$

AJB, M. Lautenbacher, G. Ostermaier (9303284)
AJB, F. Schwab, S. Uhlig (0405132)

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ in the SM

But significant parametric uncertainties

Data

due to $\left|\mathbf{V}_{\mathrm{ub}}\right|,\left|\mathbf{V}_{\mathrm{cb}}\right|, \gamma$
NA62 : 1 Event!

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(17.3 \pm 11) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right) \leq 2.6 \cdot 10^{-8}
\end{aligned}
$$

CKM Uncertainties

AJB, Buttazzo, Girrbach-Noe, Knegjens 1503.02693

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.30) \cdot 10^{-11}\left[\frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2.8}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.36 \pm 0.05) \cdot 10^{-11}\left[\frac{\left|\mathbf{V}_{\mathrm{ub}}\right|}{3.88 \cdot 10^{-3}}\right]^{2}\left[\frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2}\left[\frac{\sin \gamma}{\sin (73.2)}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.58) \cdot 10^{-11}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.81}\left[\frac{\overline{\mathrm{Br}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)}{3.4 \cdot 10^{-9}}\right]^{1.42}\left[\frac{227.7}{\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}}\right]^{2.84} \\
& \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 1.11) \cdot 10^{-11}\left[\frac{\left|\varepsilon_{\mathrm{K}}\right|}{2.23 \cdot 10^{-3}}\right]^{1.07}\left[\frac{\gamma}{73.2^{\circ}}\right]^{-0.11}\left[\frac{\mathrm{~V}_{\mathrm{ub}}}{3.88 \cdot 10^{-3}}\right]^{-0.95}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.4 \pm 1.0) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.4 \pm 0.6) \cdot 10^{-11}
\end{aligned}
$$

Section 3

$\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{K} \rightarrow \pi \nu \bar{v}, \Delta \mathrm{M}_{\mathrm{K}}$

beyond SM

AJB (1601.00005)

What are the implications of NP in $\varepsilon^{\prime} / \varepsilon$ and ε_{K} on $\mathrm{K} \rightarrow \pi \nu \bar{v}$ and $\Delta \mathbf{M}_{\mathrm{K}}$?

$\varepsilon^{\prime} / \varepsilon$ within SM

$\varepsilon^{\prime} / \varepsilon \sim\left[\frac{\operatorname{ReA}_{2}}{\operatorname{ReA}_{0}} \operatorname{ImC}_{6}\left\langle\mathbf{Q}_{6}\right\rangle_{0}-\operatorname{ImC}_{8}\left\langle\mathbf{Q}_{8}\right\rangle_{2}+\right.$ smaller contributions $]$
$\left\{\begin{array}{lll}\frac{\mathrm{ReA}_{2}}{\operatorname{Re} A_{0}} \approx \frac{1}{22} & \frac{\mathrm{ImC}_{6}}{\mathrm{ImC}_{8}} \approx 90 & \frac{\left\langle\mathrm{Q}_{8}\right\rangle_{2}}{\left\langle\mathrm{Q}_{6}\right\rangle_{0}} \approx 2\end{array}\right\} \Rightarrow$ strong $_{\text {cancellations }}$

$\varepsilon^{\prime} / \varepsilon$ beyond $S M\left(Q_{6}, Q_{8}, Q_{6}^{\prime}, Q_{8}^{\prime}\right)$

1. Generally Q_{8} wins over Q_{6} because $\left(\frac{\mathrm{ImC}_{6}}{\mathrm{ImC}_{8}}\right)^{\mathrm{NP}} \approx 0(1)$

2
Q_{6} wins over Q_{8} in the presence of a flavour symmetry forbidding Q_{8}
3. Chromomagnetic operators (not in this talk)

General Z' at Work

Can solve anomalies in $\mathbf{R}_{\mathrm{K}}, \mathbf{R}_{\mathrm{K}^{+}}, \mathbf{P}_{5}{ }^{\prime}$ (many papers)

Here : $\quad \varepsilon^{\prime} / \varepsilon, \mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \Delta \mathbf{M}_{\mathrm{K}}$

$\mathbf{Q}_{6}, \mathbf{Q}_{6}^{\prime}-$ QCD Penguin operators
$\mathbf{Q}_{8}, \mathbf{Q}_{8}^{\prime}-$ Electroweak Penguin operators

$$
\begin{array}{ll}
\mathbf{Q}_{6}=\left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathrm{V}-\mathrm{A}} & \sum_{\mathrm{q}}\left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathrm{V}+\mathrm{A}} \\
\mathbf{Q}_{8}=\left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathrm{V}-\mathrm{A}} & \sum_{\mathrm{q}} \mathbf{e}_{\mathrm{q}}\left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathrm{V}+\mathrm{A}}
\end{array}
$$

Basic Structure of NP Contributions

$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)^{N P} \rightarrow \operatorname{lm} \quad \varepsilon_{K}^{N P} \rightarrow \operatorname{Im} \cdot \operatorname{Re} \\
& \left(\kappa_{\varepsilon^{\prime}} \geq 0.5\right) \quad\left(\kappa_{\varepsilon} \geq 0.1\right) \\
& \Delta M_{K}^{N P} \sim\left[(\operatorname{Re})^{2}-(\operatorname{lm})^{2}\right]
\end{aligned}
$$

Dominance of $Q_{6}\left(Q_{6}^{\prime}\right) \Rightarrow \operatorname{Im} \gg \operatorname{Re} \Rightarrow\left\{\Delta M_{k}^{\mathrm{NP}}<0\right\}$
Dominance of $Q_{8}\left(Q_{8}^{\prime}\right) \Rightarrow \operatorname{Re} \gg \operatorname{lm} \Rightarrow\left\{\Delta M_{k}^{\mathrm{NP}}>0\right\}$ (small)

Distinction between these scenarios

Main Message

Correlation between $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K} \rightarrow \pi v \bar{v}$ in Z^{\prime} scenarios depends on whether QCP Penguin $\left(Q_{6}\right)$ or EWP $\left(Q_{8}\right)$ dominates NP in $\varepsilon^{\prime} / \varepsilon$

EWP $\left(Q_{8}\right)$

(0.5 < $\boldsymbol{K}_{\varepsilon^{\prime}}<1.5$)

$$
R_{+}^{v \bar{v}}=\frac{\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)_{S M}} \quad R_{0}^{v \bar{v}}=\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)_{S M}}
$$

$$
R_{\Delta M}^{Z^{\prime}}=\frac{\left(\Delta M_{K}\right)^{N P}}{\left(\Delta M_{K}\right)^{\exp }}
$$

QCD Penguin $\left(Q_{6}\right)$

Electroweak Penguin $\left(\mathbf{Q}_{8}\right)$

Section 5

BSM Models and $\varepsilon^{\prime} / \varepsilon$

NP Models and $\varepsilon^{\prime} / \varepsilon$ Anomaly

Littlest Higgs (T parity) Z-FCNC

Z'-Models
331- Models
Vector-Like Quarks SUSY

Blanke, AJB, Recksiegel (1507.06316)
AJB (1601.00005), Bobeth, AJB, Celis, Jung (1703.04753) Endo, Kitahara, Mishima, Yamamoto (1612.08839)

AJB (1601.00005), AJB, Buttazzo, Knegjens (1507.08672)
AJB, De Fazio (1512.02869, 1604.02344)
Bobeth, AJB, Celis, Jung (1609.04783)
Tanimoto, Yamamoto (1603.07960)
Kitahara, Nierste, Tremper (1604.07400)
Endo, Mishima, Ueda, Yamamoto (1608.01444)
Crivellin, D‘Ambrosio, Kitahara, Nierste (1703.05786)
Endo, Goto, Kitahara, Mishima, Ueda, Yamamoto (1712.04959)

Right-handed Currents $S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{B-L}$ Leptoquark Models

Cirigliano, Dekens, De Vries, Meraghetti (1703.04751)
Haba, Umeeda, Yamada (1802.09903)
Bobeth, AJB (1712.01295)

Leptoquarks meet $\varepsilon^{\prime} / \varepsilon$ and rare K Processes

1712.01295

Christoph Bobeth

AJB

$\varepsilon^{\prime} / \varepsilon$ and rare K Processes

Assuming that the upper bound on $\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}$ from Dual QCD is correct: Largest anomaly!

But in contrast to $\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*}}$ (LQs contribute there at tree level) in $\varepsilon^{\prime} / \varepsilon$ leptoquarks contribute at one-loop (RG running and box contributions) $\Rightarrow \quad$ Large $\operatorname{Im}(\mathrm{Y})$ couplings required

Problems with rare decays
$\mathrm{K} \rightarrow \pi \nu \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}^{+} \mathrm{I}^{-}, \mathrm{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$(tree-level) but also $\Delta \mathbf{M}_{\mathrm{K}}, \varepsilon_{\mathrm{K}}$

Leptoquark Models

Scalar Leptoquark

S_{1}
\tilde{S}_{1}
R_{2}
\tilde{R}_{2}
S_{3}

SU(2)

singlet singlet
doublet
triplet

U_{1}

Barbieri et al Isidori et al Crivellin et al

Vector Leptoquarks

$$
\begin{aligned}
& \mathbf{U}_{1} \\
& \tilde{\mathrm{u}}_{1} \\
& \tilde{v}_{2} \\
& \tilde{\mathrm{v}}_{2} \\
& \mathrm{u}_{3}
\end{aligned}
$$

$$
S_{1}, S_{3}
$$

Crivellin et al (1703.09226)

Buttazzo et al (1706.07808)

$\mathbf{S}_{3}, \tilde{\mathbf{R}}_{2}$

Fajfer et al (1706.0779)

Eliminating Leptoquarks as origin of $\varepsilon^{\prime} / \varepsilon$ anomaly

Bobeth + AJB 1712.01295

Step 1
$\tilde{\mathbf{U}}_{1}, \tilde{\mathbf{V}}_{2}$ do not contribute to $\varepsilon^{\prime} / \varepsilon$

Step 2
$\tilde{\mathbf{S}}_{1}, \tilde{\mathbf{R}}_{2}, \mathbf{S}_{3}, \mathbf{U}_{3}$
do not generate Q_{8} operator through RG

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\operatorname{Im}(\text { Yukawa) very large } \\
\text { to get } \varepsilon^{\prime} / \varepsilon
\end{array} \Rightarrow \begin{array}{l}
\text { Bounds on } \mathrm{K} \rightarrow \pi v \bar{v} \\
\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}^{+} \mathrm{I}^{-}, \Delta \mathbf{M}_{\mathrm{K}} \\
\text { strongly violated }
\end{array} \\
\hline
\end{array}
$$

Step 3

Disfavoured

$$
\mathrm{C}_{9}^{\mathrm{NP}}=\mathrm{C}_{10}^{\mathrm{NP}}
$$

Favoured
by B-physics
$\left(C_{9}^{N P}=-C_{10}^{N P}\right)$

Basic Dynamics for $\varepsilon^{\prime} / \varepsilon$ in Leptoquark Models

Renormalization
 Electroweak Evolution
 from $M_{\text {LQ }}$ to low-energy
 + QCD evolution enhancing Q_{8}

(SMEFT)

> Box-Diagrams in models with left-handed and right-handed couplings contributing directly to $\varepsilon^{\prime} / \varepsilon\left(Q_{8}\right)$
$\left\{\begin{array}{l}\text { Semi-leptonic } \\ \text { Operators } \\ \text { of Leptoquark } \\ \text { models }\end{array}\right] \Rightarrow\left\{\begin{array}{l}\text { Non-leptonic } \\ \text { Operators } \\ \text { contributing } \\ \text { to } \varepsilon^{\prime} / \varepsilon\end{array}\right]$
$\left(\log M_{\mathrm{LQ}} / \mu_{\mathrm{EW}}\right.$ enhanced)
: selects $\frac{\mathbf{S}_{1}, \mathbf{R}_{2}, \mathbf{U}_{1}, \mathbf{V}_{2}}{\hat{\uparrow}}$
Favoured by
B-physics anomalies

U_{1} Model meets $\varepsilon^{\prime} / \varepsilon$ and rare K Decays

Generation of Q_{8} through RG group!
No tree-level contributions to $\mathrm{K} \rightarrow \pi v \bar{v}$, generated through RG but still consistent with bounds even for $\kappa_{\varepsilon} \approx 1.0$

If only left-handed or right-handed couplings present ruled out through

$$
\binom{\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu^{+} \mu^{+},}{\mathrm{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}} \begin{aligned}
& \text { (the only hope: } \\
& \text { couplings } \\
& \text { between } \tau \text { and d, } \mathrm{s})
\end{aligned}
$$

Box contributions with left- and right-handed couplings could help but UV completion needed to do the calculation. Would also generate LR contributions to $\Delta M_{K}, \varepsilon_{\mathrm{K}}$: very dangerous!

Leptoquarks facing $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K} \rightarrow \pi \nu \bar{v}$

-_ Exp. Bound
 -------- Grossman-Nir Bound

Leptoquarks facing $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}^{+} \mathrm{I}^{-}$

Exp. Bound

Leptoquarks facing $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K}_{\mathrm{s}} \rightarrow \mu \mu$

Exp. Bound (LHCb 2017)
Future LHCb Bound

Main Messages on LQs in $\varepsilon^{\prime} / \varepsilon$ and rare K Decays

If improved lattice calculations will confirm the $\varepsilon^{\prime} / \varepsilon$ anomaly at the level $\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{NP}} \geq 5 \cdot 10^{-4}$ LQs are likely not responsible for it.

But if $\varepsilon^{\prime} / \varepsilon$ anomaly disappears large NP effects from LQs in rare K decays still possible.
(Need non-zero couplings to first generation!!)
(Need imaginary couplings!)
(Need both left-handed and right-handed couplings!)
In contrast to most explanations of B-anomalies

Main Messages from this Talk

The inclusion of meson evolution in the phenomenology of any non-leptonic transition like $K^{0}-\bar{K}^{0}$ mixing, $K \rightarrow \pi \pi$ decays ($\Delta I=1 / 2 R u l e, \varepsilon^{\prime} / \varepsilon$) is mandatory !

Meson Evolution is hidden in LQCD results but among analytic approaches only DQCD takes this important QCD dynamics into account.

DQCD
Prediction
$\varepsilon^{\prime} / \varepsilon$ anomaly will be confirmed by RBC-UKQCD this summer!

Open Questions for Coming Years

$$
\begin{array}{|l}
\operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) ? \\
\text { NA62 }
\end{array}
$$

$\mathrm{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right) ?$
KOTO
$\mathrm{B} \rightarrow \mathrm{K}\left(\mathrm{K}^{*}\right) \mathrm{v} \bar{v} ?$
Belle

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}, \mathrm{~K}_{\varepsilon^{\prime}} ? \quad\left(\varepsilon_{\mathrm{K}}\right)_{\mathrm{SM}}, \mathrm{~K}_{\varepsilon} ? \quad\left(\Delta \mathrm{M}_{\mathrm{K}}\right)_{\mathrm{SM}} ?
$$

New Anomalies in Flavour Physics (B, D, LFV)?

New Particles discovered at the LHC?

What about $\Delta \mathrm{l}=1 / 2$ Rule?
(New Physics at 10-20\% ?)
Lattice QCD
Can hopefully answer this question.

Coming Years : Flavour Precision Era

LHC

Upgrade $\mathrm{E}=14 \mathrm{TeV}$ (CERN)

$$
\begin{array}{r}
\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\left(\sim 10^{-10}\right) \text { (CERN) } \\
\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \tilde{v}\left(\sim 3 \cdot 10^{-11}\right) \mathrm{J} \text {-PARC } \\
\text { (Japan) }
\end{array}
$$

Lepton Flavour
Violation
$\mu \rightarrow \mathbf{e}_{\gamma}$
$\mu \rightarrow$ eee
$\tau \rightarrow \mu \gamma, \tau \rightarrow 3 \mu$

Neutrinos

Electric Dipole Moments

Improved

 LatticeGauge Theory Calculations

Exciting Times are just ahead of us !!!

Exciting Times are just ahead of us !!!

Thank You!

Finding Anomaly in $\varepsilon^{\prime} / \varepsilon$ Norway: 2015

