New Physics in Hadronic Tau Decays

Antonio Rodríguez Sánchez

IFIC (UV-CSIC)

LIO International Conference on Flavor Physics, Lyon 19/04/2018

In collaboration with:

Vincenzo Cirigliano Adam Falkowski Martin González-Alonso

< □ > < □ > < □ > < □ > < □ >

Hadronic τ decays in the SM

$$\mathcal{L}_{ ext{eff}}^{\mathcal{SM}} = -rac{G_F V_{ud}}{\sqrt{2}} igg[ar{ au} \gamma_\mu (1-\gamma_5)
u_ au \cdot ar{u} \gamma^\mu (1-\gamma_5) d + ext{h.c.} igg]$$

Suppressed in SM by $1/M_W^2$. Very rich phenomenology. Precise predictions

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[\left(1 + \epsilon_L^{d\tau} \right) \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \epsilon_R^{d\tau} \, \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \, \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \bar{\tau} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \left[\epsilon_S^{d\tau} - \epsilon_P^{d\tau} \gamma_5 \right] d \qquad \text{Cirigliano '10} \\ \left. + \epsilon_T^{d\tau} \, \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

Decay to hadronic state
$$\langle n |$$

$$\frac{d\Gamma_{BSM}(s) - d\Gamma_{SM}(s)}{d\Gamma_{BSM}} = \sum a_i(s)\epsilon_i^{d\tau}$$

 Very good precision needed for dΓ_{SM}(s) and dΓ_{exp}(s)... except if a_i es very large

< □ > < □ > < □ > < □ > < □ >

• $d\Gamma_{SM}(s) a_i(s)$ involve form factors

 $\tau \to \eta \pi^- \nu_\tau$

Very suppressed in SM
$$a_s(s) = O(\frac{m_{\tau}}{m_u - m_d}) \rightarrow \epsilon_s \approx -(2 \pm 7) \cdot 10^{-3}$$
 Garcés '17

$$\Gamma(\tau^- \to \pi^- \nu_\tau) = \frac{m_\tau^2 f_\pi^2 G_F^{(e)2} |V_{ud}^{(e)}|^2}{16\pi} (1 + \delta_{RC}^\pi) (1 + \delta_{NP}^\pi)$$

- $G_{F}^{e}|V_{ud}^{e}|$ are experimental numbers. BSM corrections included in δ_{NP}^{π}
- f_{π} can be obtained from the lattice free from any NP effects FLAG '17

•
$$\delta_{NP}^{(\pi)} = 2(\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau})$$

$$\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau} = -(1.5 \pm 6.7) \cdot 10^{-3}$$

æ

イロト イヨト イヨト イヨト

Exclusive constraints: $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ (preliminary results!)

$$\frac{d\Gamma_{\text{BSM}}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T] = \frac{d\Gamma_{SM}(s)}{ds} (1 + \delta_{NP}(s))$$

•
$$\frac{d\Gamma_{exp}(s)}{ds}$$
 very precisely known
• $\frac{d\Gamma_{SM}(s)}{ds} \longrightarrow F_V^{\tau}(s)$?

2

イロト イヨト イヨト イヨト

Exclusive constraints: $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ (preliminary results!)

$$\frac{d\Gamma_{\text{BSM}}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T] = \frac{d\Gamma_{SM}(s)}{ds} (1 + \delta_{NP}(s))$$

) 5/13

Exclusive constraints: $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ (preliminary results!)

$$\frac{d\Gamma_{\text{BSM}}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T] = \frac{d\Gamma_{SM}(s)}{ds} (1 + \delta_{NP}(s))$$

•
$$\frac{d\Gamma_{exp}(s)}{ds}$$
 very precisely known
• $\frac{d\Gamma_{SM}(s)}{ds} \longrightarrow F_V^{\tau}(s)$? $e^+e^- \rightarrow \pi^+\pi^-$ exp insensitive to NP $\longrightarrow F_V^{e^+e^-}(s) = F_V^{\tau}(s)$
except for small IB corrections

Contribution of $\pi\pi$ to HVP for g - 2.

Experimental inputs from Davier et al. '14 '17

メロト メロト メヨト メヨト

$$a_{\mu} = a_{\mu}^{e, \exp} = \int ds \underbrace{f(s)}_{\text{known}} \frac{d\Gamma_{SM}(s)}{ds} = \int ds f(s) \frac{d\Gamma_{\exp}(s)}{ds} (1 - \delta_{NP}(s)) = a_{\mu}^{\tau, \exp} (1 + c_i \epsilon_i)$$

$$\epsilon_L^ au+\epsilon_R^ au-\epsilon_L^e-\epsilon_R^e+0.64\epsilon_T=(8.9\pm4.4)\cdot10^{-3}$$

э

Using parity considerations $\{|n\rangle\} = \{\{|n_V\rangle\} \cup \{|n_A\rangle\}\}, \ \langle n_{V(A)}| J^{\mu}_{A(V)}|0\rangle = 0$

Summing over $|n_{V(A)}\rangle \rightarrow d\Gamma_{V(A)}(s)$. From \mathcal{L}_{eff}^{SM} one gets for $s > 4m_{\pi}^2$: $d\Gamma_V(s) = f_{VV}(s) \operatorname{Im} \Pi_{VV}(s)$ $d\Gamma_A(s) = f_{AA}(s) \operatorname{Im} \Pi_{AA}(s)$

イロト イヨト イヨト イヨト

Using parity considerations $\{|n\rangle\} = \{\{|n_V\rangle\} \cup \{|n_A\rangle\}\}, \ \langle n_{V(A)}| J^{\mu}_{A(V)}|0\rangle = 0$

Summing over
$$|n_{V(A)}\rangle \rightarrow d\Gamma_{V(A)}(s)$$
. From \mathcal{L}_{eff}^{BSM} one gets for $s > 4m_{\pi}^2$:
 $d\Gamma_V(s) = f_{VV}(s)(1 + 2\epsilon_{L+R}^{\tau} - \epsilon_{L-R}^{\tau}) \operatorname{Im} \Pi_{VV}(s) + \epsilon_T f_{VT}(s) \frac{\operatorname{Im} \Pi_{VT}(s)}{m_{\tau}}$
 $d\Gamma_A(s) = f_{AA}(s)(1 + 2\epsilon_{L-R}^{\tau} - 2\epsilon_{L+R}^e) \operatorname{Im} \Pi_{AA}(s)$

< □ > < □ > < □ > < □ > < □ >

Inclusive constraints: QCD analiticity of $\Pi(s)$

$$\int_{s_{th}}^{s_0} \frac{ds}{s_0} \omega(s) \operatorname{Im} \Pi_{V+A}^{(1+0)} + 2\pi \frac{f_{\pi}^2}{s_0} \omega(m_{\pi}^2) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \Pi_{V+A}^{(1+0), \, \mathsf{OPE}} + \delta_{DV, \, V+A}^{(\omega)}(s_0)$$

Theoretical contribution strongly dominated by PT \rightarrow take α_s from the lattice FLAG '17

$$\omega(s) = 1 \qquad \longrightarrow \qquad \epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} - 0.89\epsilon_R^{d\tau} + 0.73\epsilon_T^{d\tau} = (8.5 \pm 8.5) \cdot 10^{-3}$$

$$\omega(s) = \omega_{\tau}(s) \longrightarrow 0.72(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) - 0.56\epsilon_{R}^{d\tau} + \epsilon_{T}^{d\tau} = (3.2 \pm 11.8) \cdot 10^{-3}$$

0 8 / 13

æ

・ロト ・四ト ・ヨト ・ヨト

$$\int_{s_{th}}^{s_0} \frac{ds}{s_0} \omega(s) \operatorname{Im} \Pi_{V-A}^{(1+0)} - 2\pi \frac{f_{\pi}^2}{s_0} \omega(m_{\pi}^2) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \Pi_{V-A}^{(1+0), \, \mathsf{OPE}} + \delta_{DV, \, V-A}^{(\omega)}(s_0)$$

$$\Pi^{(1+0) \text{ OPE}}(Q^2) = \sum_i c_i(\mu, Q^2) \frac{\mathcal{O}_{i,D}(\mu)}{Q^D}$$

 $\Pi_{VV-AA}^{OPE}(s)$ vanishes in the chiral limit!

イロト イヨト イヨト イヨト

• D = 2, 4 numerically negligible

Good knowledge of the short-distance behaviour of $\Pi_{V-A}(s)$

$$\begin{split} \omega(s) &= 1 - \frac{s}{s_0} \quad \text{Combination of WSR1 and WSR2. Suppressed DVs} \\ 0.15(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) + 0.46\epsilon_R^{d\tau} + \epsilon_T^{d\tau} = (0.8 \pm 7.6) \cdot 10^{-3} \end{split}$$

э

$$\int_{s_{th}}^{s_0} \frac{ds}{s_0} \omega(s) \ln \Pi_{V-A}^{(1+0)} - 2\pi \frac{f_{\pi}^2}{s_0} \omega(m_{\pi}^2) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \Pi_{V-A}^{(1+0), \text{ OPE}} + \delta_{DV, V-A}^{(\omega)}(s_0)$$

$$\Pi^{(1+0)\,\mathsf{OPE}}(Q^2) = \sum_i c_i(\mu, Q^2) \frac{\mathcal{O}_{i,D}(\mu)}{Q^D}$$

 $\Pi_{VV-AA}^{OPE}(s)$ vanishes in the chiral limit!

- D = 0 (purely pert) vanishes at all orders
- D = 2,4 numerically negligible
- D = 6 from the lattice $(K \rightarrow \pi \pi)$ Donoghue '99

イロト イヨト イヨト イヨト

Excellent knowledge of the short-distance behaviour of $\Pi_{V-A}(s)$

$$\begin{split} \omega(s) &= \left(1 - \frac{s}{s_0}\right)^2 \text{ Three short-distance constraints involved. Very suppressed DVs} \\ &\quad 0.15(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) + 0.29\epsilon_R^{d\tau} + \epsilon_T^{d\tau} = (0.8 \pm 1.5) \cdot 10^{-3} \end{split}$$

Combined fit and SMEFT matching (preliminary results!)

$$\begin{pmatrix} \epsilon_{L}^{d\tau} - \epsilon_{L}^{de} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} \\ \epsilon_{R}^{d\tau} \\ \epsilon_{P}^{d\tau} \\ \epsilon_{P}^{d\tau} \\ \epsilon_{T}^{d\tau} \end{pmatrix} = \begin{pmatrix} 9.6 \pm 6.1 \\ 1.3 \pm 9.0 \\ -2.0 \pm 7.0 \\ -6.1 \pm 11.5 \\ -1.1 \pm 3.8 \end{pmatrix} \times 10^{-3}$$
Correlations also obtained and they will be published
$$\epsilon_{L}^{d\tau} - \epsilon_{L}^{de} = \underbrace{\delta g_{L}^{W\tau} - \delta g_{L}^{We}}_{\text{Constrained by EWPO}} - [c_{\ell q}^{(3)}]_{\tau\tau 11} + \underbrace{[c_{\ell q}^{(3)}]_{ee11}}_{\text{Constrained by EWPO}} \\ \epsilon_{R}^{d\tau} = \epsilon_{R}^{de} = \underbrace{\delta g_{R}^{Wq}}_{\text{Constrained by EWPO}} \\ \epsilon_{S,P}^{d\tau} = -\frac{1}{2} [c_{lequ} \pm c_{ledq}]_{\tau\tau 11}^{*} \\ \epsilon_{T}^{d\tau} = -\frac{1}{2} [c_{lequ}^{(3)}]_{\tau\tau 11}^{*} \\ EWPO = Falkowski '17 \end{pmatrix}$$

Novel low-energy constraints

[

$$c_{lq}^{(3)}, c_{lequ}, c_{ledq}, c_{lequ}^{(3)}]_{ au au 11} = (1.0 \pm 2.9, 0.66 \pm 0.71, -0.43 \pm 0.66, -0.02 \pm 0.82) imes 10^{-2}$$

Antonio Rodríguez Sánchez (IFIC)

LIO 10 / 13

2

LHC constraints (preliminary results!)

m_T [GeV]

 $pp \rightarrow \tau \nu$ 1801.06992

Not valid if new degrees of freedom emerge at $M \sim \text{TeV}$

Powerful constraints only for operators enhanced by $\frac{E^2}{v^2}$

Coefficient	ATLAS $\tau \nu$	Hadronic $ au$ decays
$[c_{\ell q}^{(3)}]_{\tau \tau 11}$	[0.0, 1.1]	[-12.8, 0.0]
$[c_{\ell equ}]_{\tau \tau 11}$	[-4.6, 4.6]	[-3.9, 8.6]
$[c_{\ell edq}]_{\tau \tau 11}$	[-4.6, 4.6]	[-7.7, 4.8]
$[c_{\ell equ}^{(3)}]_{ au au 11}$	[-2.7, 2.7]	[-8.8, 1.8]

One by one constraints. 95% C.L ($\mu = 1 \text{ TeV}$)

< □ > < □ > < □ > < □ > < □ >

Combination τ + LHC (preliminary results!)

D 12 / 13

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

Precision τ observables become one more parcel to probe new physics and some interesting constraints can be found beyond the single pion channel

More work to be done

- Improve the two-pion constraint
- Extract information from the strange sector
- CPV couplings?
- Implications for specific BSM models and B anomalies?

イロト イヨト イヨト イヨト

• Wait for improved data sets... Belle 2?