New physics in $b \rightarrow c \ell \nu$ decays

Martin Jung

DFG Deutsche Forschungsgemeinschaft

LIO International Conference "From Flavour to New Physics" Lyon, France, 19th of April 2018

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, {
 m FF}^2$
- Determination of $|V_{ij}|$ (7/9)

Beyond the Standard Model:

- Leptonic decays ~ m_l²
 ▶ large relative NP influence possible (e.g. H[±])
- NP in semi-leptonic decays small/moderate
 Need to understand the SM very precisely!

Key advantages:

- Large rates
- Minimal hadronic input \Rightarrow systamatically improvable
- Differential distributions \Rightarrow large set of observables

Analysis mandatory due to $au - e/\mu$ and $e - \mu$ LFNU data

Lepton-non-Universality in $b \rightarrow c \tau \nu$ 2018

 $R(X) \equiv \frac{\operatorname{Br}(B \to X\tau\nu)}{\operatorname{Br}(B \to X\ell\nu)}$

0.40

- $R(D^{(*)}) \ 2 \times LHCb, \ 4 \times Belle \ recently$
- au-polarization (au
 ightarrow had) [1608.06391]
- $B_c
 ightarrow J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c

Lepton-non-Universality in $b \rightarrow c \tau \nu$ 2018

$$R(X) \equiv \frac{\operatorname{Br}(B \to X \tau \nu)}{\operatorname{Br}(B \to X \ell \nu)}$$

- $R(D^{(*)})$ 2× LHCb, 4× Belle recently
- au-polarization (au
 ightarrow had) [1608.06391]
- $B_c
 ightarrow J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of *B_c*
- $b \rightarrow X_c \tau \nu$ by LEP

$|V_{xb}|$: inclusive versus exclusive

Long-standing problem, motivation for NP [e.g. Voloshin'97] :

• Very hard to explain by NP [Crivellin/Pokorski'15] (but see [Colangelo/de Fazio'15])

Suspicion: experimental/theoretical systematics?

$|V_{cb}|$: Recent developments

Recent Belle $B
ightarrow D, D^* \ell \nu$ analyses

Recent lattice results for $B \rightarrow D$ [FNAL/MILC, HPQCD, RBC/UKQCD (ongoing)] $B \rightarrow D$ between incl. $+ B \rightarrow D^*$ New lattice result for $B \rightarrow D^*$ [HPQCD] V_{ch}^{incl} cv, compatible with old result

$$B \rightarrow D^* \ell \nu$$
 re-analyses with CLN,
 $|V_{cb}| = 39.3(1.0)10^{-2}$ [Bernlochner+'17]
+ BGL [Bigi+,Grinstein+'17] (Belle only),
 $|V_{cb}| = 40.4(1.7)10^{-2}$

Theoretical uncertainties previously underestimated, in two ways:

- $1/m_c^2$ contributions likely underestimated in CLN
- Uncertainty given in CLN ignored in experimental analyses
- Inclusive-exclusive tension softened

Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$B ightarrow D(e,\mu) u$	BR	BaBar	global fit	2008
$B ightarrow D\ell u$	$\frac{d\Gamma}{dw}$	BaBar	hadronic tag	2009
$B o D(e,\mu) u$		Belle	hadronic tag	2015
$B ightarrow D^*(e,\mu) u$	BR	BaBar	global fit	2008
$B ightarrow D^* \ell u$	BR	BaBar	hadronic tag	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^0	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^\pm	2007
$B o D^*(e,\mu) u$	$\frac{d\Gamma_{L,T}}{dw}$	Belle	untagged	2010
$B ightarrow D^* \ell u$	$\frac{d\Gamma}{d(w,\cos\theta_V,\cos\theta_I,\phi)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ -averaged vs. individual measurements
- Correlation matrices given or not

Sometimes presentation prevents use in non-universal scenarios 😕

▶ Recent Belle analyses (mostly) exemplary 🙂

Comments regarding systematics and fitting [MJ/Straub'18]

Present (and future!) precision renders small effects important:

- Form factor parametrization
- d'Agostini effect:

assuming systematic uncertainties \sim (exp. cv) introduces bias \clubsuit e.g. 1-2 σ shift in $|V_{cb}|$ in Belle 2010 binned data

- Rounding in a fit with strong correlations and many bins:
 1σ between fit to Belle 2017 data from paper vs. HEPdata
- BR measurements and isospin violation [MJ 1510.03423] : Normalization depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$ Taken into account, but simple HFLAV average problematic:
 - Potential large isospin violation in $\Upsilon \to BB~[{\rm Atwood}/{\rm Marciano'90}]$
 - Measurements in r^{HFAG}₊₀ assume isospin in exclusive decays
 This is one thing we want to test!
 - Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)
 - Relevant for **all** BR measurements at the %-level

Form Factors

Only $V_{cb} \times FF(q^2)$ extracted from data SM: fit to data + normalization from lattice/LCSR/... $\rightarrow |V_{cb}|$ NP: can affect the q^2 -dependence, introduces additional FFs To determine general NP, FF shapes needed from theory

We use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+,0}(q^2)$ $(B \to D)$, $h_{A_1}(q_{\max}^2)$ $(B \to D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for $R_{1,2}(0)$, $h_{A_1}(w = w_{\max}, 1.3)$, $G(w = w_{\max}, 1.3)$ [Faller+'08] HQET relations up to $\mathcal{O}(\alpha_s, 1/m_{b,c})$ plus $1/m_{c,b}^2$ subset, mostly à la [Bernlocher+'17], but w/o CLN relation between slope and curvature 0.6

2

4

6

8

10

NP in semileptonic decays - Setup and tree-level scenarios

EFT for $b \to c \ell \nu_{\ell'}$ transitions (no light ν_R , SM: $C_j^{\ell \ell'} = 0$):

$$\mathcal{L}_{\text{eff}}^{b \to c\ell\nu} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} \sum_{\ell=e,\mu} \sum_{\ell'=e,\mu,\tau} \left[\delta_{\ell\ell'} \delta_{jV_L} + C_j^{\ell\ell'} \right] \mathcal{O}_j^{\ell\ell'}, \quad \text{with}$$

 $\mathcal{O}_{V_{L,R}}^{\ell\ell'} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\ell}\gamma_{\mu}\nu_{\ell'}, \ \mathcal{O}_{S_{L,R}}^{\ell\ell'} = (\bar{c}P_{L,R}b)\bar{\ell}\nu_{\ell'}, \ \mathcal{O}_{T}^{\ell\ell'} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\ell}\sigma_{\mu\nu}\nu_{\ell'}.$ NP models typically generate subsets (never C_{T} alone)

Full classification possible for tree-level mediators [Freytsis+'15] :

Model	C_{V_L}	C_{V_R}	C_{S_R}	C_{S_L}	Ст	$C_{S_L} = 4C_T$	$C_{S_L} = -4C_T$
Vector-like singlet	×						
Vector-like doublet		×					
W'	×						
H^{\pm}			×	×			
S_1	×						×
R_2						×	
S_3	×						
U_1	×		×				
V_2			×				
U_3	×						

SM and left-handed vector operators As a crosscheck, produce SM values (using data from HEPdata): $V_{cb}^{B\to D} = (39.6 \pm 0.9)10^{-3}$ $V_{cb}^{B\to D^*} = (39.0 \pm 0.7)10^{-3}$ Iow compared to BGL analyses, compatible with recent results NP in $\mathcal{O}_{V_L}^{\ell\ell'}$: can be absorbed via $\tilde{V}_{cb}^{\ell} = V_{cb} \left[|1 + C_{V_L}^{\ell}|^2 + \sum_{\ell' \neq \ell} |C_{V_L}^{\ell\ell'}|^2 \right]^{1/2}$ Only subset of data usable 4.3 $B \rightarrow D, D^*$ in agreement $B \rightarrow D\ell\nu$ No sign of LFNU $B \rightarrow D^* \ell \nu$ 4.2• constrained to be $\lesssim \% \times V_{ch}$ 4.1 $V^{\mu}_{cb})/2$ 4.0 In the following: $10^2 imes (ilde{V}_{cb}^e + \ . .$ • e and μ analyzed separately Usable in different contexts 3.7 Full FF constraints used 3.6 Plots created with flavio flavio $35 \cdot$ + independently double-checked -0.10 -0.050.00 0.05 0.10 -0.150.15

 $10^2 \times (\tilde{V}^e_{cb} - \tilde{V}^{\mu}_{cb})/2$

• Open source, adaptable

Right-handed vector currents

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_R}^{\ell\ell'}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15] All available data can be used in SMEFT context Violation could signal non-linear realization of EWSB [Catà/MJ'15]

Impact of differential distributions: V_{cb} and C_{V_R} can be determined individually in $B \rightarrow D^*$ Tension smaller, no improvement from C_{V_R}

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\max}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\max}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\max}^2)^{1/2}$ Findpoint very sensitive to scalar contributions! [see also Nierste+'08]

Scalar contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 \left(q^2 - q_{\text{max}}^2\right)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 \left(q^2 - q_{\text{max}}^2\right)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Fit with scalar couplings (generic $C_{S_{L,R}}$):

Slightly favours large contributions in muon couplings with $C^{\mu}_{\mathcal{S}_R} \approx -C^{\mu}_{\mathcal{S}_L}$

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 \left(q^2 - q_{\text{max}}^2\right)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 \left(q^2 - q_{\text{max}}^2\right)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Also for LQ U_1 (or V_2): $B \rightarrow D$ stronger than $B \rightarrow D^*, X_c$:

Possible large contribution in $C_{S_R}^{\mu}$ excluded by $B \rightarrow D$

Tensor operatorsFor $m_{\ell} \rightarrow 0$, no interference with SMFor fixed V_{cb} , tensor contributions increase ratesClose to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_{D^*}^2}{m_B^2}\right)$ Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Tensor contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):

Tensor operatorsFor $m_{\ell} \rightarrow 0$, no interference with SMFor fixed V_{cb} , tensor contributions increase ratesClose to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_{D^*}^2}{m_B^2}\right)$ Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Fit for generic C_{S_1} and C_T (including LQs S_1 and R_1):

 $B o D^*$ favours large contributions in $C^{e,\mu}_{S_L}$, ruled out by B o D

Conclusions

- Absence of clear NP signals \rightarrow new challenges
- V_{cb} inclusive vs. exclusive softened
- New issues in determining systematic/theory uncertainties
- Form factors: so far only f_{+,0}(q²) available from LQCD
 ▶ presently HQET relations necessary
- b → cτν and b → sℓℓ motivate NP also in b → cℓν
 Analysis requires separation of lepton flavours + correlations
- NP analysis: all scenarios with (single) tree-level mediators analyzed
 Strong constraints on LFNU in C_{Vi}
 - **b** Differential $B \rightarrow D^*$: new constraint on right-handed currents
 - Endpoint relations for scalars and tensors improve constraints

 $b \rightarrow c \ell \nu$ beyond V_{cb} : strong NP analyzers

Conclusions

- Absence of clear NP signals \rightarrow new challenges
- V_{cb} inclusive vs. exclusive softened
- New issues in determining systematic/theory uncertainties
- Form factors: so far only f_{+,0}(q²) available from LQCD
 ▶ presently HQET relations necessary
- b → cτν and b → sℓℓ motivate NP also in b → cℓν
 Analysis requires separation of lepton flavours + correlations
- NP analysis: all scenarios with (single) tree-level mediators analyzed
 Strong constraints on LFNU in C_{Vi}
 - **b** Differential $B \rightarrow D^*$: new constraint on right-handed currents
 - Endpoint relations for scalars and tensors improve constraints

 $b \rightarrow c \ell \nu$ beyond V_{cb} : strong NP analyzers

Thank you for your attention!

Linear embedding of *h*:

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensions
 Finite powers of fields
- LO: SM

Non-linear embedding of *h*:

- *h* singlet, *U* Goldstones
- Appropriate for strongly- coupled NP
- Power-counting: loops (~ χPT)
 Arbitrary powers of h/v, φ
- LO: SM + modified Higgs-sector

LO and NLO in linear and non-linear HEFT

Linear EFT Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, H$

Finite powers of fields *H*-interactions symmetry-restricted

LO:

- Terms of dimension 4
- SM (renormalizable)

NLO:

 59 ops. (w/o flavour) [Buchmüller+'86,Grzadkowski+'10] Non-linear EFT

Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, U, h$ $(U = \exp(2i\Phi/\nu))$ Arbitrary powers of Φ, h : $U, f(h/\nu)$ U-interactions symmetry-restricted

LO:

- Tree-level h,U interactions + $SU(2)_{L+R}$, g_{X-h} weak
- SM + $f_i(h/v)$, non-renorm.

NLO:

• ~ 100 ops. (w/o flavour)

[Buchalla+'14]

- Non-linear EFT generalizes linear EFT
- LO EFT predictive, justification for κ framework

Flavour EFTs for semi-leptonic decays

At scales µ ≪ v: remove top + heavy gauge bosons
 Construct EFT from light fermions + QCD, QED
 Gauge group: SU(3)_C × U(1)_{em}

Example: $b \rightarrow c \tau \nu$ transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\mathcal{L}_{\text{eff}}^{b \to c\tau\nu} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j$$

$$\begin{aligned} \mathcal{O}_{V_{L,R}} &= (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\tau}\gamma_{\mu}\nu\,, \qquad \mathcal{O}_{S_{L,R}} &= (\bar{c}P_{L,R}b)\bar{\tau}\nu\,, \\ \mathcal{O}_{T} &= (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\tau}\sigma_{\mu\nu}\nu\,. \end{aligned}$$

Generically:

- 1. All coefficients independent
- 2. Coefficients for other processes unrelated (e.g. $\tau \leftrightarrow e, \mu$)

Tree-level matching of HEFT(s) on flavour-EFT

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15]
 Differences between linear and non-linear realization?
 Separate "generic" operators from non-linear HEFT

Two types of contributions:

- 1. Operators already present at the EW scale \rightarrow identification
- 2. Tree-level contributions of HEFT operators with SM ones • *e.g.* HEFT $\bar{b}sZ$ vertex with $Z \rightarrow \ell \ell$
- Both of the same order

Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alsonso+'14]

A word of caution: flavour hierarchies have to be considered! Mostly relevant when SM is highly suppressed, *e.g.* for EDMs

Implications of the Higgs EFT for flavour $_{[Cata/MJ'15]} q \rightarrow q'\ell\ell$:

- Tensor operators absent in linear EFT for d → d'ℓℓ [Alonso+'14]
 Present in general! (already in linear EFT for u → u'ℓℓ)
- Scalar operators: linear EFT C^(d)_S = −C^(d)_P, C^{'(d)}_S = C^{'(d)}_P [Alonso+'14]
 Analogous for u → u'ℓℓ, but no relations in general!
- ${f q}
 ightarrow {f q'} \ell
 u$:
 - All operators are independently present already in the linear EFT
 - However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* $\sum_{U=u,c,t} \lambda_{US} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{tS} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
 - These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!

- Surprising, since no Higgs is involved
- Difficult differently [e.g. Barr+, Azatov+'15]

Implications of the Higgs EFT for Flavour: $q ightarrow q' \ell u$

$$b \rightarrow c \tau \nu$$
 transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c}\gamma^{\mu} P_{L,R} b) \bar{\tau} \gamma_{\mu} \nu \,, \qquad \mathcal{O}_{S_{L,R}} = (\bar{c}P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c}\sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: *C_{V_R}* is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* Σ_{U=u,c,t} λ_{Us} C^(U)_{S_R} = − ^{e²}/_{8π²}λ_{ts} C^(d)_S [see also Cirigliano+'12,Alonso+'15]</sub>

 These relations are again absent in the non-linear EFT

Matching for $b \rightarrow c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\rm CC} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\rm CC} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\rm CC} \left(c'_{S1} + \hat{c}'_{S5} \right) , \\ C_{S_R} &= 2 \,\mathcal{N}_{\rm CC} \left(c_{LR4} + \hat{c}_{LR8} \right) , \\ C_T &= -\mathcal{N}_{\rm CC} \left(c'_{S2} + \hat{c}'_{S6} \right) , \end{split}$$

where $\mathcal{N}_{\rm CC} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP Pelovant for $\sigma = \sqrt{PP} = \sqrt{2(2/2)}$

• Relevant for $\sigma_{\rm BR}/{\rm BR} \sim \mathcal{O}(\%)$

Branching ratio measurements require normalization...

• B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$

• LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon o B^+ B^-) / \Gamma(\Upsilon o B^0 ar{B}^0) \equiv 1$
- LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)