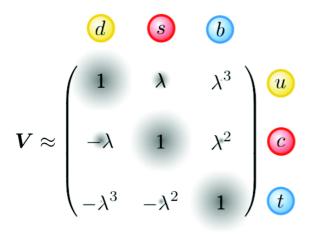
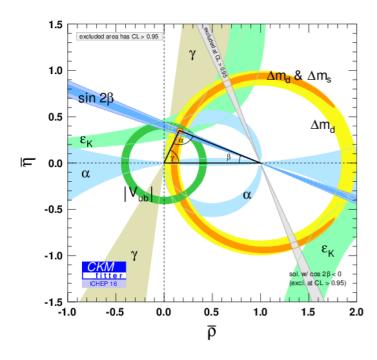


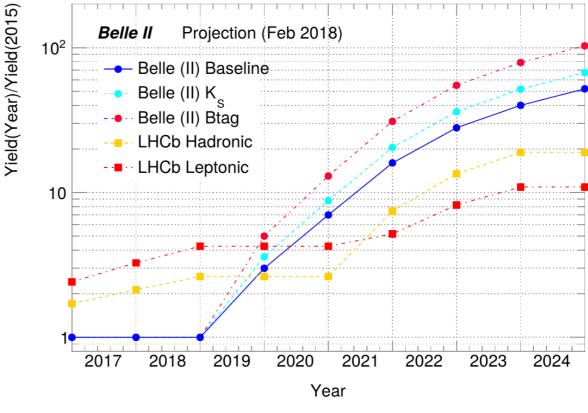
CP Violation prospects at the Belle II Experiment

Luigi Li Gioi – for the Belle II collaboration

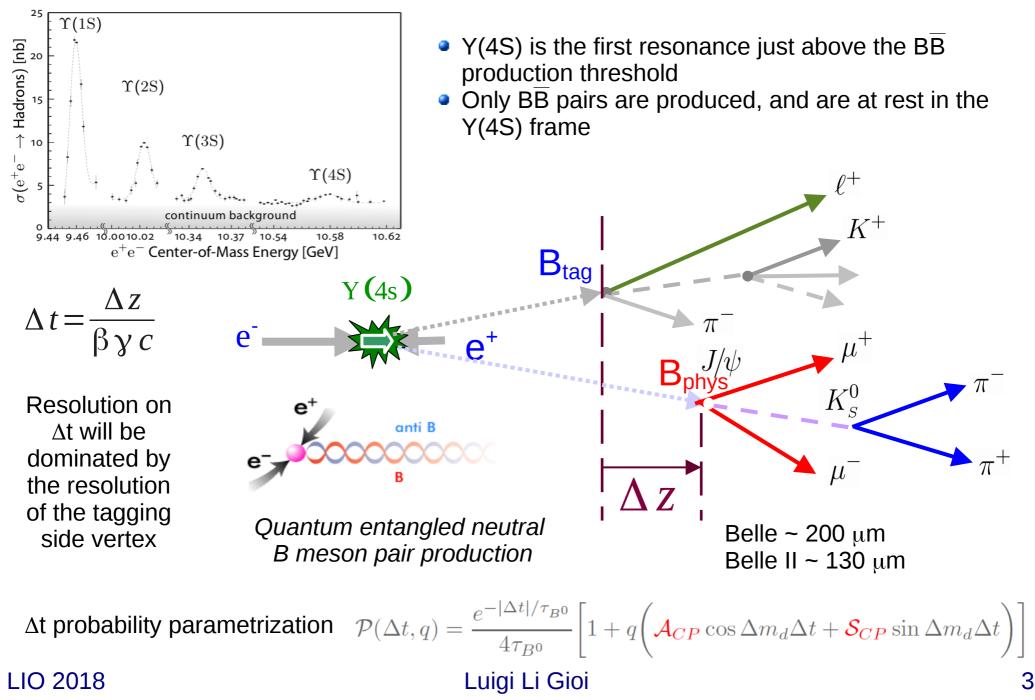

Max-Planck-Institut für Physik, München


Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

> LIO International Conference on Flavour Physics "From Flavour to New Physics" April 19th 2018


The Unitarity Triangle

 $\lambda \approx 0.22$: Cabibbo angle


- All flavor variables constrained in the SM CKM fit are in good agreement with experimental observations
- Some variables still to be measured precisely
 - therefore a lot of room for surprises !

Two notations for the CKM angles: α , β , γ or ϕ_1 , ϕ_2 , ϕ_3

LIO 2018

Time dependent measurements

Sin(2β) : b \rightarrow ccs

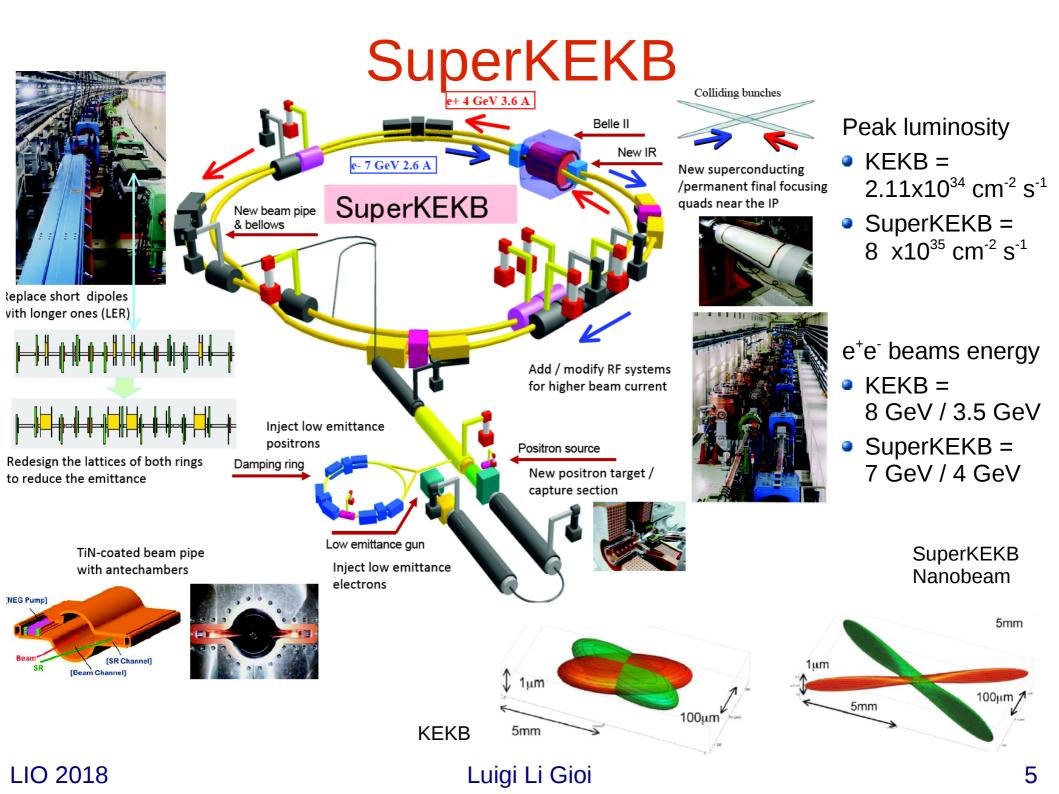
400 250 350 300 Events / 0.5 ps 200 250 150 200 150 100 100 50 50 0 0 0.6 0.6 0.4 0.4 Asymmetry 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -4 -2 0 2 -6 -4 -2 0 2 -6 4 6 4 6 ∆t (ps) ∆t (ps)

FIG. 2 (color online). The background-subtracted Δt distribution (top) for q = +1 (red) and q = -1 (blue) events and asymmetry (bottom) for good tag quality (r > 0.5) events for all *CP*-odd modes combined (left) and the *CP*-even mode (right).

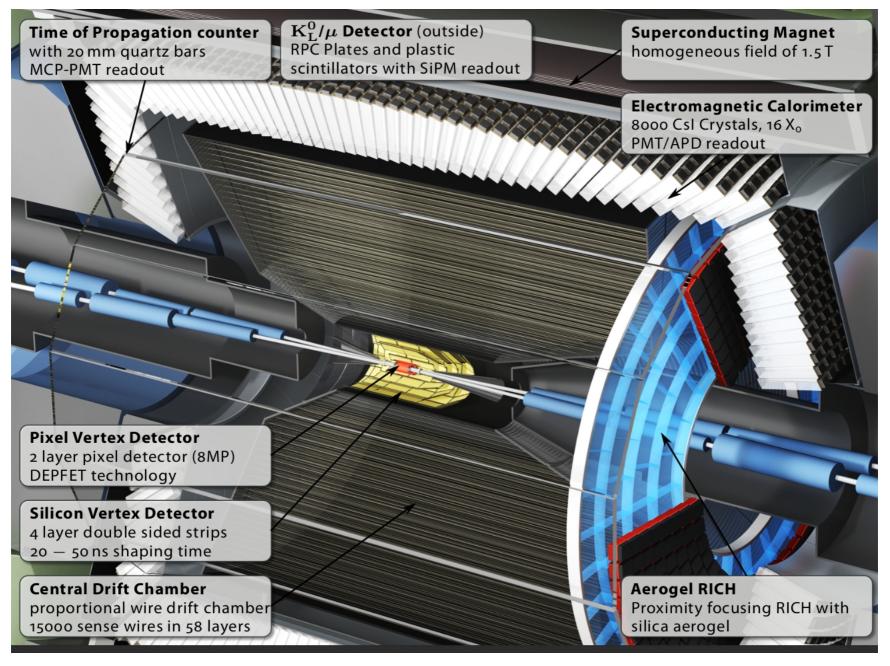
Irreducible systematic errors:

- Vertexing (without detector upgrade)
- Tag-side interference
 - More sophisticated treatment will be considered

TABLE II. *CP* violation parameters for each $B^0 \rightarrow f_{CP}$ mode and from the simultaneous fit for all modes together. The first and second errors are statistical and systematic uncertainties, respectively.


Decay mode	$e \sin 2\phi_1 \equiv -\xi_f \mathcal{S}_f$	\mathcal{A}_{f}
$J/\psi K_S^0$	$+0.670\pm 0.029\pm 0.013$	$-0.015 \pm 0.021^{+0.045}_{-0.023}$
$\frac{J/\psi K_S^0}{\psi(2S)K_S^0}$	$+0.670 \pm 0.029 \pm 0.013$ $+0.738 \pm 0.079 \pm 0.036$	$+0.104 \pm 0.055 \substack{+0.047 \\ -0.027}$
$\chi_{c1}K_S^0$	$+0.640 \pm 0.117 \pm 0.040$	$-0.017 \pm 0.083^{+0.046}_{-0.026}$
$J/\psi K_L^0$	$+0.642\pm 0.047\pm 0.021$	$+0.019\pm0.026^{+0.017}_{-0.041}$
All modes	$+0.667 \pm 0.023 \pm 0.012$	$+0.006 \pm 0.016 \pm 0.012$

Source	Irreducible	Error on \mathcal{S}	Error on \mathcal{A}
Vertexing	Х	± 0.007	± 0.007
Δt resolution		± 0.007	± 0.001
Tag-side interference	Х	± 0.001	± 0.008
Flavor tagging		± 0.004	± 0.003
Possible fit bias		± 0.004	± 0.005
Signal fraction		± 0.004	± 0.002
Background Δt PDFs		± 0.001	< 0.001
Physics parameters		± 0.001	< 0.001
Total		± 0.012	± 0.012

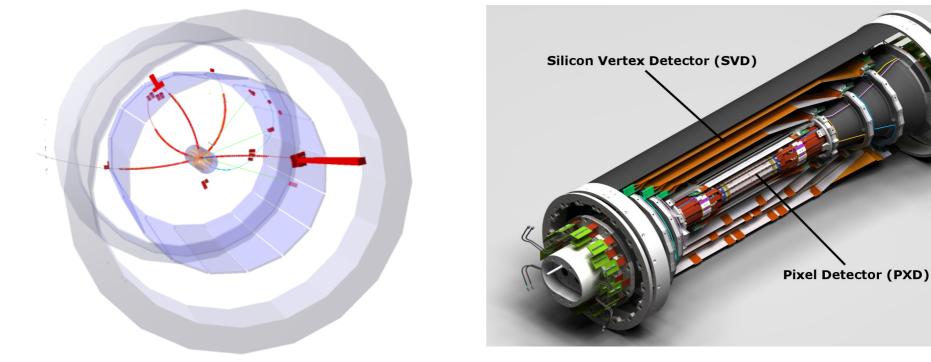

Luigi Li Gioi

Events / 0.5 ps

Asymmetry

Belle II

LIO 2018



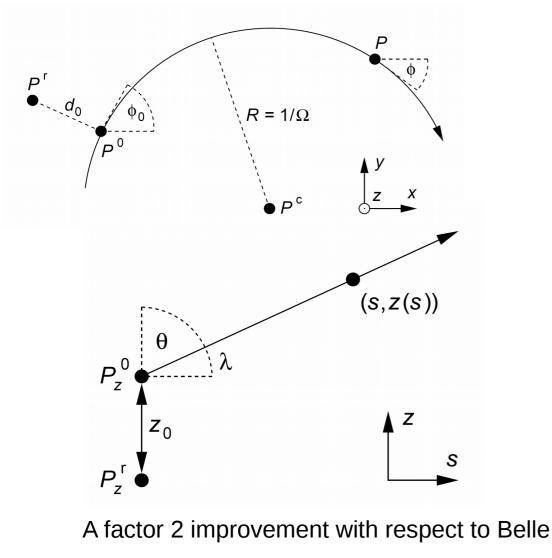
Pixel detector needed

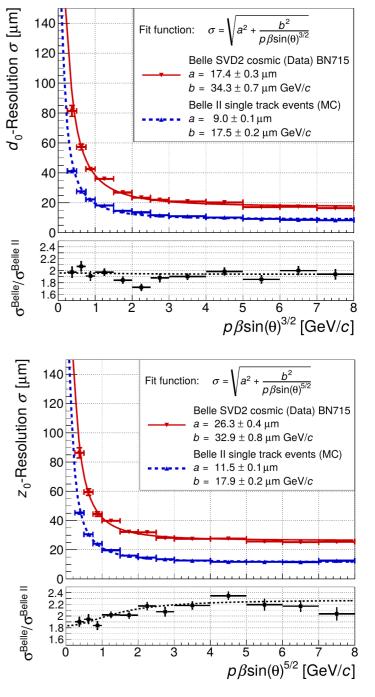
- 40 times increase of luminosity \rightarrow higher background
- Lower boost \rightarrow smaller separation between the B mesons

Most suited technology : DEPFET

- Innermost detector system as close as possible to IP
- Highly granular pixel sensors provide most accurate 2D position information
- Reconstruction of primary and secondary vertices of short-lived particles
 - Decay of particles is typical in the order of 100 μ m from the IP

The impact parameter

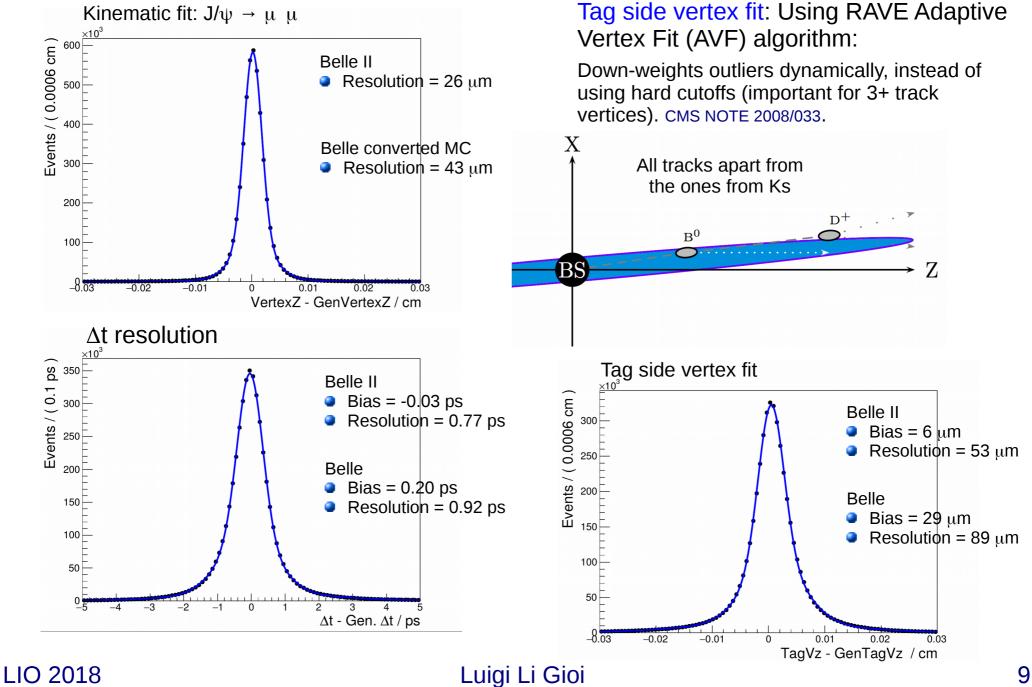

Luigi Li Gioi



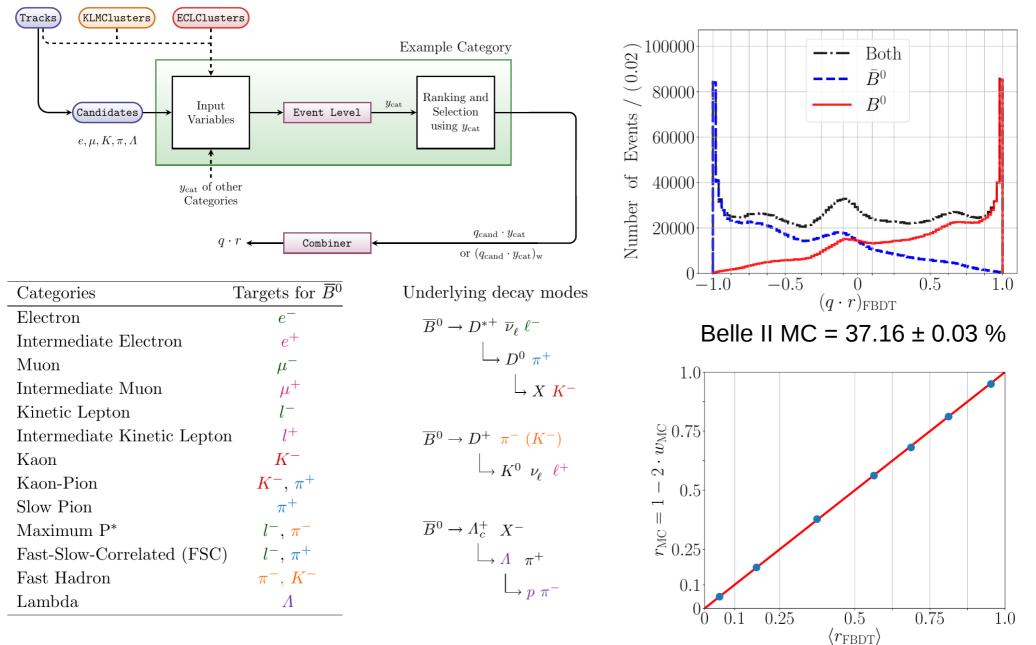
8

The impact parameters: d_0 and z_0

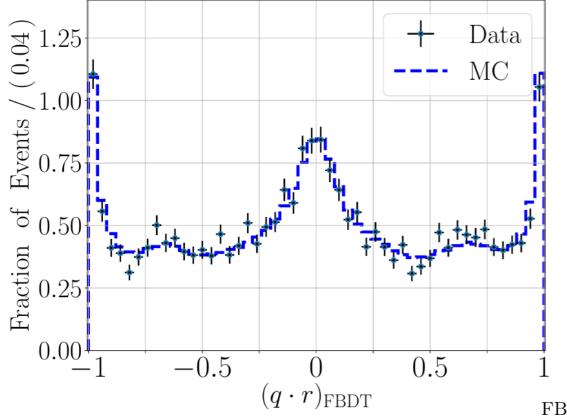
 defined as the projections of distance from the point of closest approach to the origin



LIO 2018


Vertex fit

Flavor tagger



LIO 2018

Luigi Li Gioi

Belle Data – MC comparison

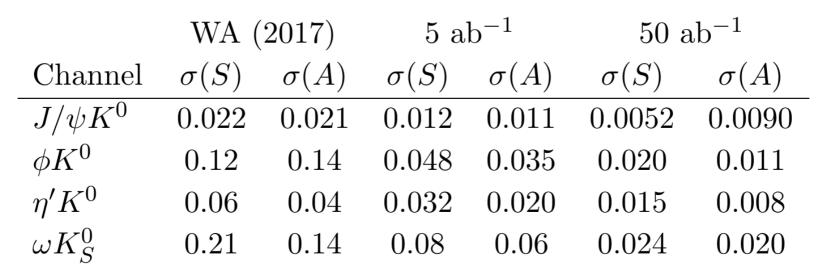
Belle MC and data

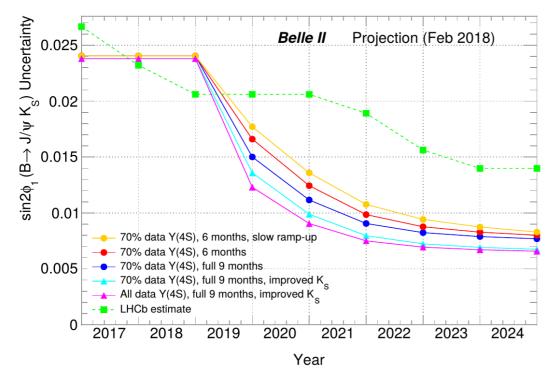
Belle II flavor tagging algorithm

More than 10% efficiency increase on the same dataset

FBDT Combiner

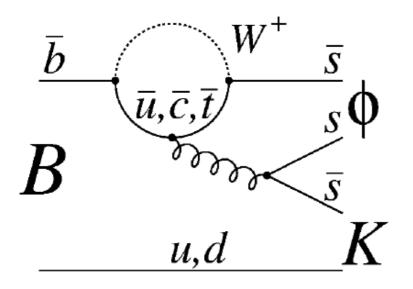
Efficiency

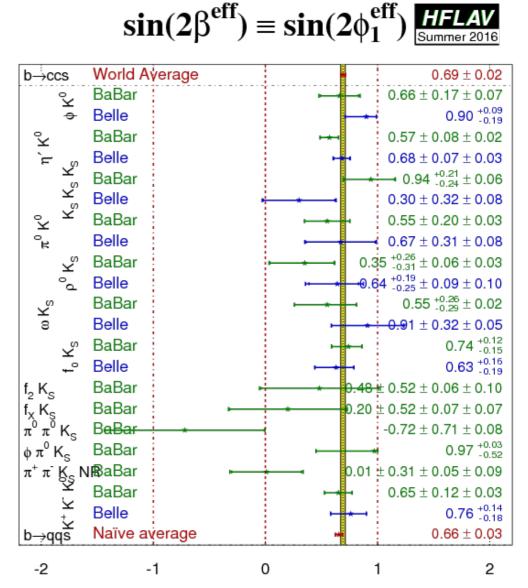

- Belle Data (assuming linearity) = 33.6 ± 0.5 %
- Belle Converted MC = 34.18 ± 0.03 %
- Belle old FT Data = 30.1 ± 0.4 %
- Belle II MC = 37.16 ± 0.03 %


I BB I Comon	101		
<i>r</i> - Interval	$arepsilon_i$	$w_i \pm \delta w_i$	$\varepsilon_{{ m eff},i}\pm\deltaarepsilon_{{ m eff},i}$
0.000 - 0.100	15.49	47.61 ± 0.04	0.035 ± 0.002
0.100 - 0.250	15.81	41.42 ± 0.06	0.465 ± 0.014
0.250 - 0.500	19.88	31.57 ± 0.09	2.695 ± 0.066
0.500 - 0.625	10.68	21.87 ± 0.06	3.375 ± 0.110
0.625 - 0.750	11.52	15.68 ± 0.06	5.416 ± 0.169
0.750 - 0.875	9.68	9.39 ± 0.07	6.372 ± 0.219
0.875 - 1.000	16.77	2.32 ± 0.05	15.226 ± 0.382
Total	$\varepsilon_{\rm eff} = \Sigma$	$\sum_i \varepsilon_i \cdot \langle 1 - 2w_i \rangle$	$a^2 = 33.6 \pm 0.5$

LIO 2018

Sin(2β) : expected errors




- Sin(2β) will remain the most precise measurement on the Unitarity Triangle parameters
- In Belle II the measurement will be dominated by systematics
 - Effort concentrated in understand and reducing them
 - A precision of 1% is expected using the b → ccs decay modes

LIO 2018

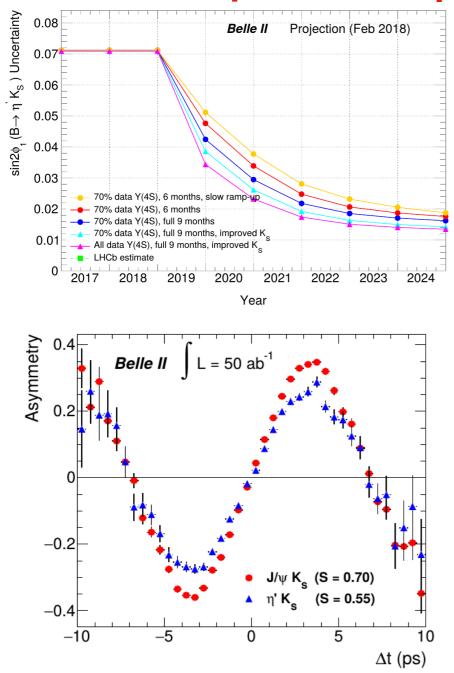
Sin(2 β): b \rightarrow qqs

In principle measures sin2 β , but sensitive to new physics

$B^0 \rightarrow \phi$ Ks: expected sensitivity

Channel	ε_{reco}	Yield	$\sigma(S)$		· · · · · · · · · · · · · · · · · · ·		Belle		Projection	/Fob
1 ab^{-1} scenario:				0.14			Delle	· · · · · · · · · · · · · · · · · · ·	Projection	(гер
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	456	0.174	0.16 0.14 0.14 0.14				`````````		
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	153	0.295	-						
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	109	0.338	1.0 ↑ (B) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C						
K_S modes combination	l		0.135							
$K_S + K_L$ modes combined	nation		0.108		 → 70% data Y(4S → 70% data Y(4S 		slow ramp-u	0		.
5 ab^{-1} scenario:					 70% data Y(4S 70% data Y(4S), full 9 mon), full 9 mon	hs, improvec	Ks		
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	2280	0.078		▲ All data Y(4S), ■ - LHCb estimate			<u> </u>		
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	765	0.132	0 2	2017 2018	2019	2020 Ye	202 [.] ar	1 2022	202
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	545	0.151			_				
			0.060			Be	elle II	pro	jectior	ו
$K_S + K_L$ modes combined	nation		0.048							

we estimate the expected yield of ϕK_L^0 based on previous BaBar and Belle analyses (but use the same Δt resolution we estimate in $\phi \to K^+ K^-$ for Belle II).


LIO 2018

Luigi Li Gioi

Sensitivity study

$B^0 \rightarrow \eta'$ Ks: expected sensitivity

Similar Belle sensitivity given the same integrated luminosity

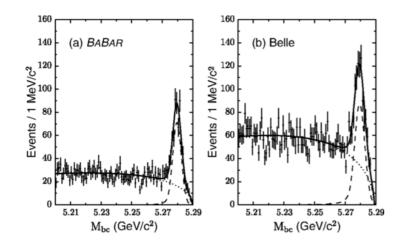
5	,		
Channel	yield	$\sigma(S_f)$	$\sigma(A_f)$
	$1 {\rm ~ab^{-1}}$		
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(\pm)}$	969	0.13	0.08
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{(00)}$	215	0.27	0.17
$\eta'(\eta_{3\pi}\pi^{\pm})K_S^{(\pm)}$	283	0.25	0.16
$\eta'(ho\gamma)K_S^{(\pm)}$	2100	0.09	0.05
$\eta'(ho\gamma)K_S^{(00)}$	320	0.22	0.14
K_S^0 modes	3891	0.065	0.040
$K_L^0 \text{ modes}$	1546	0.17	0.11
$K_S^0 + K_L^0$ modes	5437	0.060	0.038
	$5 \ ab^{-1}$		
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{(\pm)}$	4840	0.06	0.04
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{(00)}$	1070	0.12	0.09
$\eta'(\eta_{3\pi}\pi^{\pm})K_S^{(\pm)}$	1415	0.11	0.08
$\eta'(ho\gamma)K_S^{(\pm)}$	10500	0.04	0.03
$\eta'(\rho\gamma)K_S^{(00)}$	1600	0.10	0.07
K_S^0 modes	19500	0.028	0.021
K_L^0 modes	7730	0.08	0.05
$K_S^0 + K_L^0$ modes	27200	0.027	0.020

LIO 2018

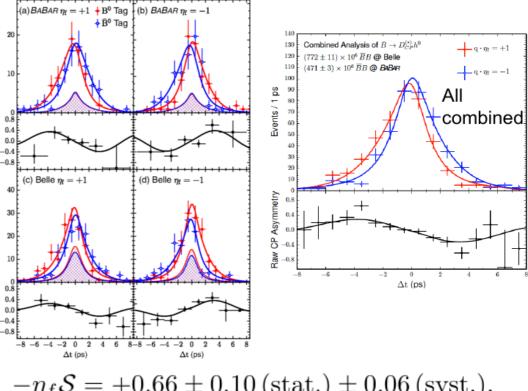
Luigi Li Gioi

BaBar + Belle $B^0 \rightarrow D_{CP} h^0$

bs


Events / 1

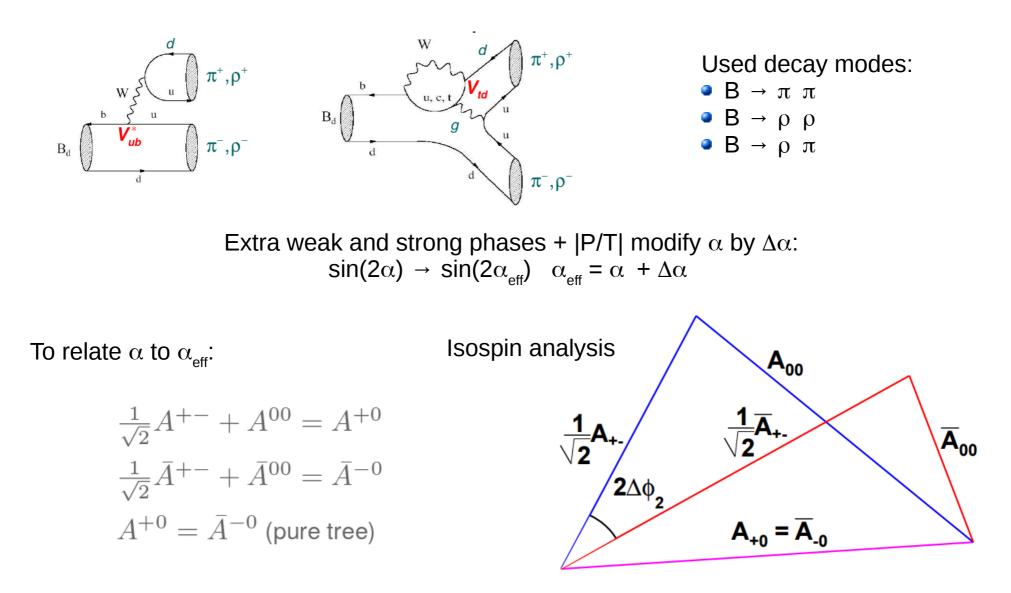
ents / 1 ps


Phys. Rev. Lett. 115, 121604

- Leading order: tree
- Sub-leading order: tree, phase within the SM
- Independent form NP in loops
- Suitable to measure β
- Branching fraction is the limiting factor

B0 \rightarrow D(*)⁰ h⁰, h⁰= π^{0} , η , ω D⁰ \rightarrow K⁺K⁻, Ks π^{0} and Ks ω Yields =

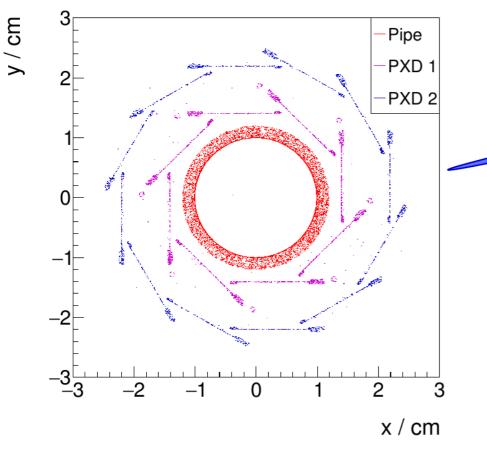
- 508±31events(BaBar)
- 757±44events(Belle)

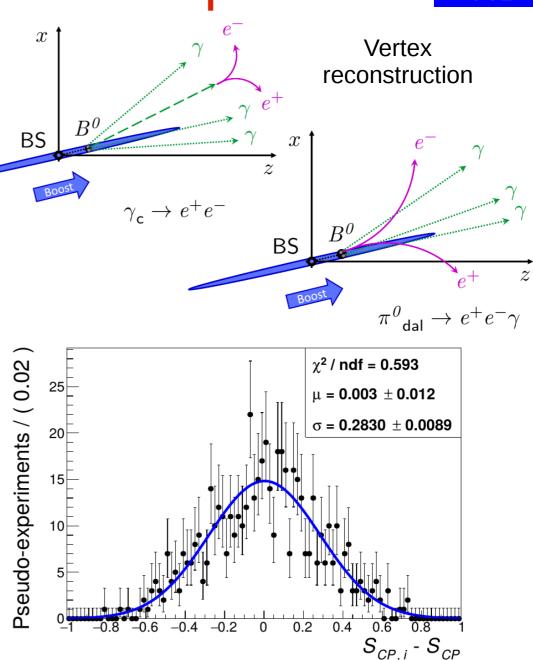

- $-\eta_f S = +0.66 \pm 0.10 \text{ (stat.)} \pm 0.06 \text{ (syst.)},$ $C = -0.02 \pm 0.07 \text{ (stat.)} \pm 0.03 \text{ (syst.)}.$
 - First observation of CPV(5.4σ)
 - Belle II : δ(β) ~ 0.015
 - Important test for $b \rightarrow c \overline{c} s$

LIO 2018

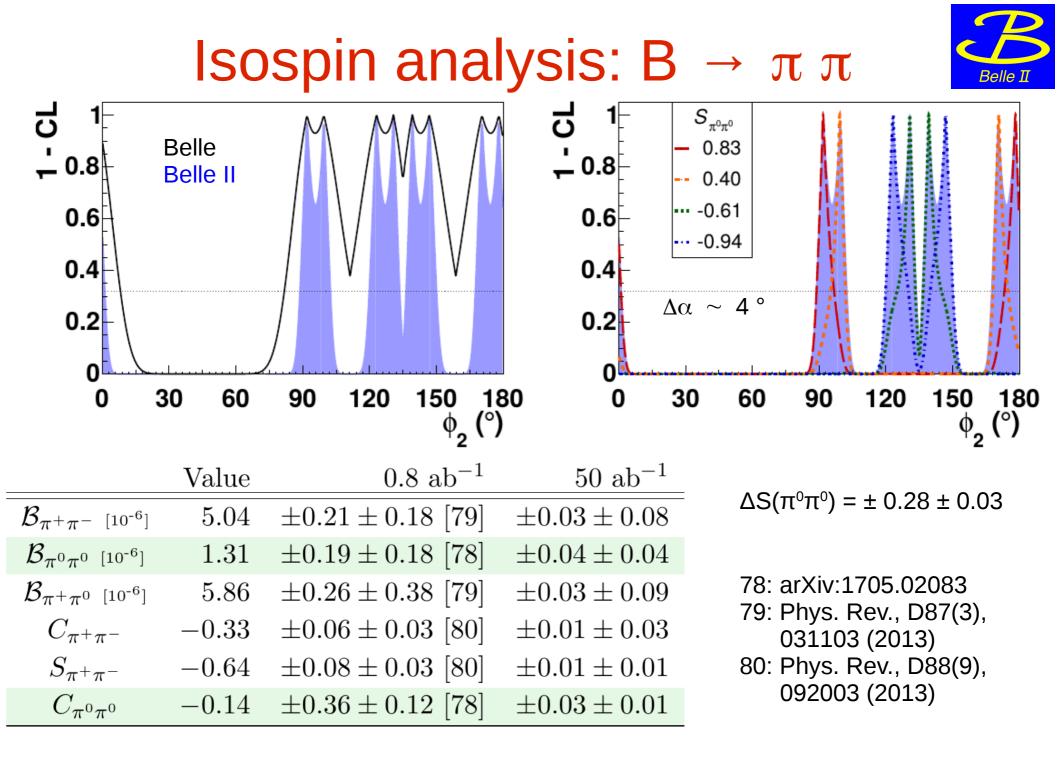
Measurement of $\boldsymbol{\alpha}$

M. Gronau and D. London, PRL 65 3381 (1990)


Proceeds mainly through $b \rightarrow u\overline{u}d$ tree diagram, but penguin contributions introduce additional phases


LIO 2018

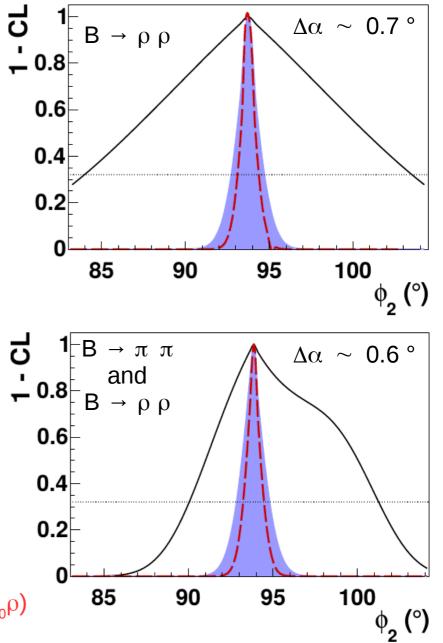
$B^0 \rightarrow \pi^0 \pi^0$: converted photons



- Photon conversion inside the Belle II detector (Beam pipe + PXD)
- 3 % of $B^0 \rightarrow \pi^0 \pi^0$ events
- ~ 5 % including π^0 Dalitz decay
- Reconstruction efficiency will be crucial

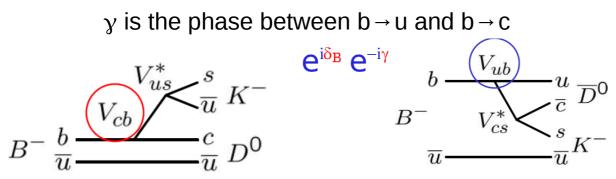
LIO 2018

LIO 2018

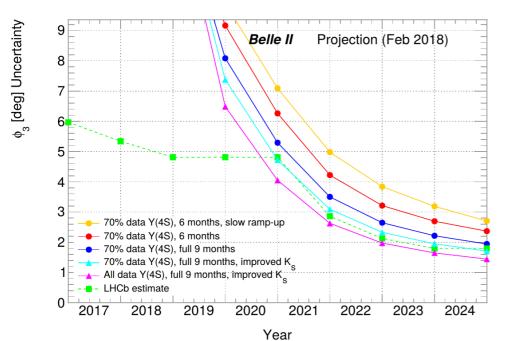

Isospin analysis: B $\rightarrow \rho \rho$

	Value	$0.8 \ {\rm ab}^{-1}$	50 ab^{-1}
$f_{L,\rho^+\rho^-}$	0.988	$\pm 0.012 \pm 0.023$ [74]	$\pm 0.002 \pm 0.003$
$f_{L, ho^0 ho^0}$	0.21	$\pm 0.20 \pm 0.15$ [81]	$\pm 0.03 \pm 0.02$
$\mathcal{B}_{ ho^+ ho^-}$ [10 ⁻⁶]	28.3	$\pm 1.5 \pm 1.5$ [74]	$\pm 0.19 \pm 0.4$
${\cal B}_{ ho^0 ho^0}$ [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [81]	$\pm 0.04 \pm 0.02$
$C_{ ho^+ ho^-}$	0.00	$\pm 0.10 \pm 0.06$ [74]	$\pm 0.01 \pm 0.01$
$S_{ ho^+ ho^-}$	-0.13	$\pm 0.15 \pm 0.05$ [74]	$\pm 0.02 \pm 0.01$
	Value	0.08 ab^{-1}	$50 {\rm ~ab^{-1}}$
$f_{L, ho^+ ho^0}$	0.95	$\pm 0.11 \pm 0.02$ [65]	$\pm 0.004 \pm 0.003$
${\cal B}_{ ho^+ ho^0}$ [10 ⁻⁶]	31.7	$\pm 7.1 \pm 5.3$ [65]	$\pm 0.3 \pm 0.5$
	Value	0.5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$C_{ ho^0 ho^0}$	0.2	$\pm 0.8 \pm 0.3$ [64]	$\pm 0.08 \pm 0.01$
$S_{ ho^0 ho^0}$	0.3	$\pm 0.7 \pm 0.2$ [64]	$\pm 0.07 \pm 0.01$

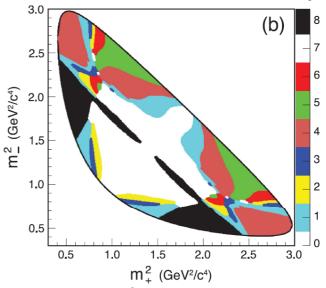
64: Phys. Rev., D78, 071104 (2008)


- 65: Phys. Rev. Lett., 91, 221801 (2003)
- 74: Phys. Rev., D93(3), 032010 (2016)
- 81: [Addendum: Phys. Rev.D89,no.11, 119903(2014)] (2012),

Belle Belle II Belle II + $(S_{00}\pi \& S_{00}\rho)$


LIO 2018

Measurement of γ with $B \rightarrow D^0 K$



Interference between these amplitudes with D^0/\overline{D}^0 decaying in the same final state

- From tree level processes
- Not affected from NP in loops

Strong phase differences can be measured at a charm factory

- CLEO result Phys. Rev. D 82, 112006(2010)
- Improvement expected from BES III

An error of 1.6° is expected

- Including more D^(*) decay modes
- Integrated luminosity = 50 ab⁻¹
- Assuming BES III will collect 10 fb⁻¹

LIO 2018

Photon polarization

Radiative B decays, with $b \rightarrow s \gamma$ transitions, dominated by loop (penguin) diagrams New physics could enter at same order (1-loop) as Standard Model

Standard Model makes definite prediction of photon helicity

(D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)):

- $B^0 \rightarrow X_s \gamma_R$
- $\overline{B}^0 \rightarrow X_s \gamma_L$

If a helicity flip occurs, the photon will also flip its helicity, producing $B^0 \rightarrow X_s \gamma_L$

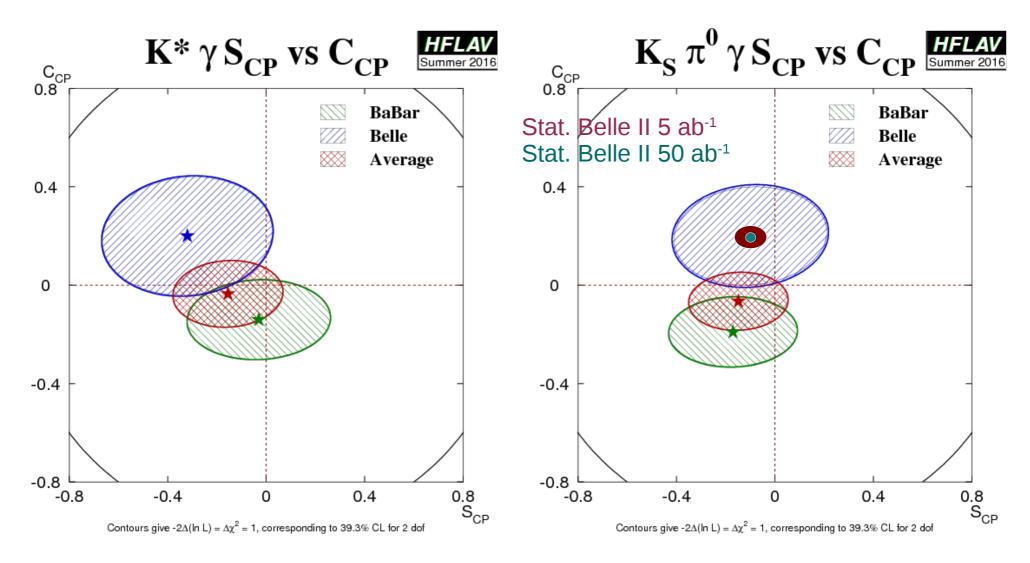
- Rate ~ m_s/m_b at the leading contribution (P. Ball and R. Zwicky, Phys. Lea. B 642, 478 (2006))
- Corrections can increase this value

No common final state for B^0 and \overline{B}^0

 Suppression of asymmetry S due to interference between B^o mixing and decay diagrams (TD CP asymmetry)

$$S_{K_S^0 \pi^0 \gamma}^{\text{SM}} \sim -2 \frac{m_s}{m_b} \sin 2\phi_1 = -(2.3 \pm 1.6)\%$$

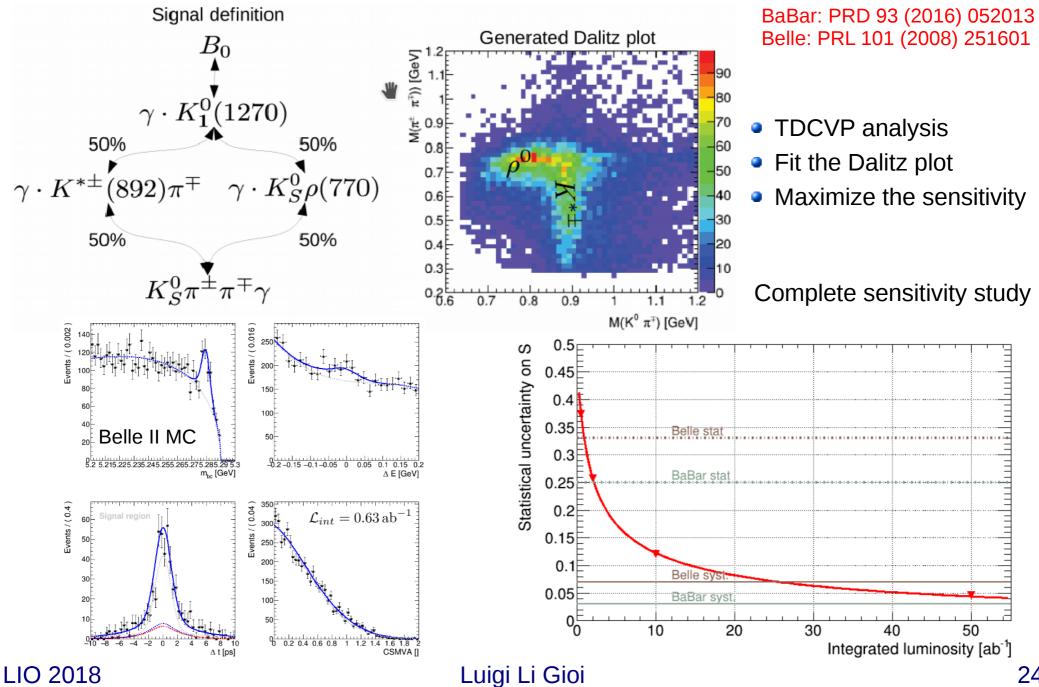
P. Ball, G. W. Jones, and R. Zwicky, Phys. Rev., D75, 054004 (2007)


C < 0.01 (direct CP violation) (Greub at al., Nucl. Phys B 434, 39 (1995))

• TD CP asymmetry measurements give an indirect measurement of photon polarization

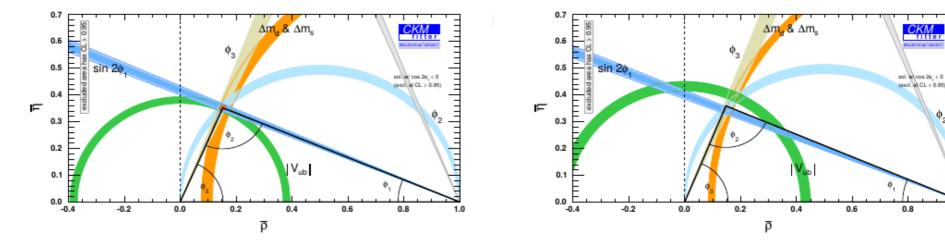
LIO 2018

$B^0 \rightarrow Ks \pi^0 \gamma$



Very important decay mode for Belle II

 $B^0 \rightarrow Ks \pi^+ \pi^- \gamma$



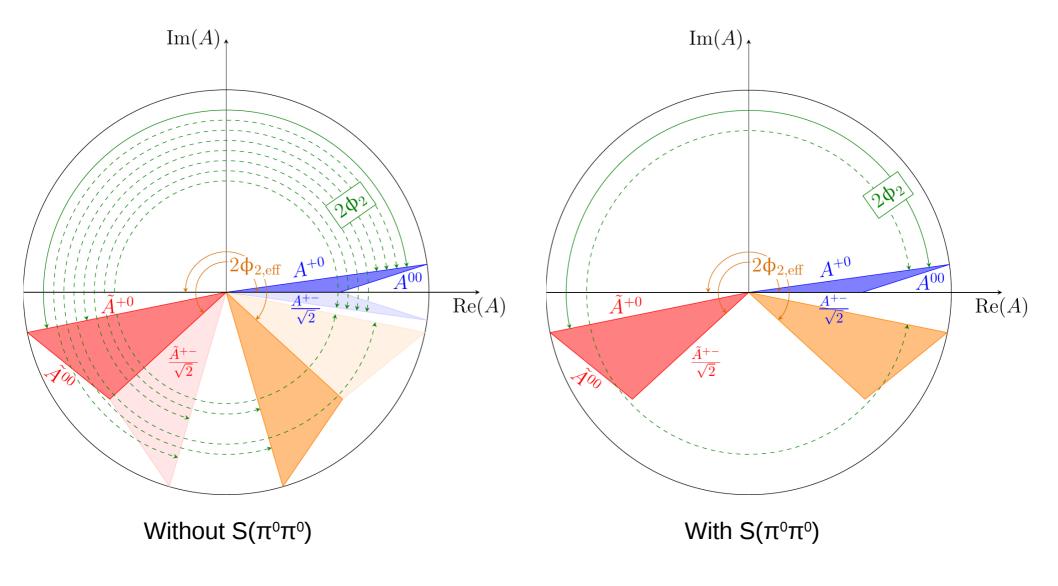
Outlook

The Belle II Physics Book: https://confluence.desy.de/display/BI/B2TiP+WebHome

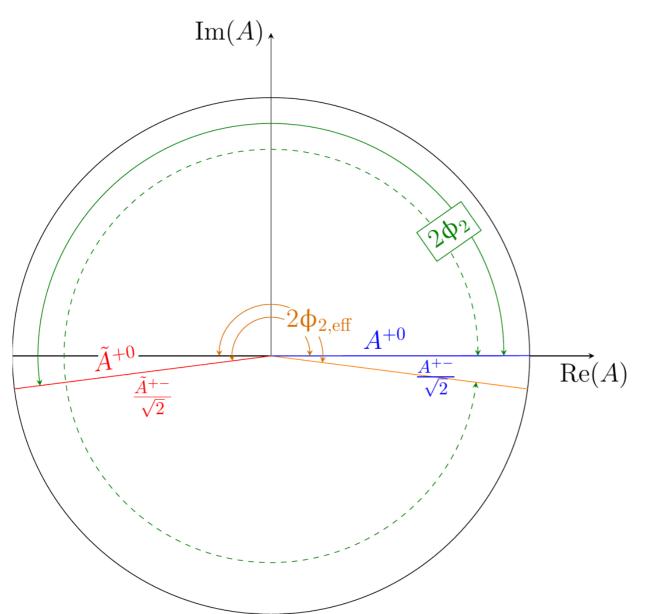
After the B-factories Before the B-factories 0.7 Г $\Delta m_{a} \& \Delta m_{s}$ φ₃ o Δm_{\star} 0.6 εκ 0.8 5 $\Delta m / \Delta m_{d}$ sin 2¢ 0.5 sol/w/cos 26 < 0 0.6 (exc), at CL > 0.95) 0.4 Ы 0.40.3 0.2 0.2 V_{ub} Vub 0.1 0 -0.2 .8 -0.6 -0.40 0.2 0.4 0.6 0.80.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 ō ρ

CKM mechanism will be tested at 1% level

Luigi Li Gioi


<u>katan hulu</u>

1.0


Backup slides

B \rightarrow π π: Isospin Triangle

Parametrization by M. Pivk and F. R. Le Diberder Eur. Phys. J. C39 (2005) 397-409

$B \rightarrow \rho \rho$: Isospin Triangle

Sin(2β) : expected errors

 ${\rm B^0}
ightarrow {\rm J/\psi \ Ks}$

	Belle	Belle II	leptonic
			categories
$S (50 \text{ ab}^{-1})$			
stat.	0.0035	0.0035	0.0060
syst. reducible	0.0012	0.0012	0.0012
syst. irreducible	0.0082	0.0044	0.0040
$A (50 \text{ ab}^{-1})$			
stat.	0.0025	0.0025	0.0043
syst. reducible	0.0007	0.0007	0.0007
syst. irreducible	$^{+0.043}_{-0.022}$	$^{+0.042}_{-0.011}$	0.011

- Sin(2β) will remain the most precise measurement on the Unitarity Triangle parameters
- In Belle II the measurement will be dominated by systematics
 - Effort concentrated in understand and reducing them

 $b \rightarrow \ c \ \overline{c} \ s$

	Belle	Belle II	leptonic
			categories
$S (50 \text{ ab}^{-1})$			
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A (50 \text{ ab}^{-1})$			
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

Three hypotheses

- Belle: same Belle non reducible systematics
- Belle II: vertex systematic / 2
- Leptonic category: only leptonic categories for the flavor tagging