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 RD(*) point to LUV in b → cℓv, with effects in taus. 

While taus call for prudence, measurements are consistent across 3 exp’s

 Either of RK(*) and RD(*) significances are ~4σ.

Either dataset conveys the same message: LUV

Effective interactions for b → s and b → c decays 
are related by SU(2) symmetry.

That’s what one expects of new interactions
 above the EW scale
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One of the two favourite scenarios, δC
9
 = – δC

10
 ≃ – 15% C

9,SM

amounts to a (V – A) x (V – A) operator, that can be written in
SU(2)

L
–symmetric form [Alonso-Grinstein-Martin Camalich, 2014] 

Again coherent with the symmetries one expects of 
NP interactions above the EWSB scale

[Hiller, Schmaltz, 2014] [Ghosh, Nardecchia, Renner, 2014][global fits]

 The above NP pattern can be generated from a purely 3rd-generation
interaction of the kind [Glashow et al., 2014] 

HNP = G ( b̄ ' L γ
λ b' L) ( τ̄ 'L γλ τ ' L) expected e.g. in

partial-compositeness 
frameworks with G = 1 /ΛNP

2 ≪ GF

with fields in the gauge basis 
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 Quantitatively, a description of b → s  &  b → c anomalies via 
a tree interaction is challenging for many reasons. The first:

RK(*):  a 15% corr. to a loop ampl.; RD(*):  a 15% corr. to a tree

 A                                       generates, through RGE running, LUV effects 
in τ → ℓ v v   (tested at per-mil accuracy) [Feruglio, Paradisi, Pattori, 2016]

(Q̄Lγ
λQL) ( L̄Lγλ LL)

 Such structure is also constrained by direct searches, notably of states
decaying to 2 τ [Greljo, Isidori, Marzocca, 2015][Faroughy, Greljo, Kamenik, 2016]
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 Attempts at such UV-complete models exist, the first being 
[Di Luzio, Greljo Nardecchia, 2017] [Bordone et al., 2017][Barbieri, Tesi, 2017]

 Common conclusion:
Fitting both sets of anomalies while passing unscathed (?) all (?) constraints
comes typically at the price of non-negligible model complications

 Maybe data are not yet mature enough?

Still, massive vectors cry out for a UV completion (loops display 
power-like dependence on cutoff, see [Barbieri et al.,  2016, 2017] )
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More tests

Measure more Lepton-Universality Violating ratios: RK * ,Rϕ , RXs ,RK 0(1430) ,R f 0

 In this situation, useful to  devise  more tests. 

Extract long-distance  effects from data

Define and measure new, clean observables sensitive to C
9
 and C

10
 

Interestingly, plenty of such tests can be carried out already at LHCb’s Run 2
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New observables sensitive to C

9
 and C

10
 



An example: B
s
 → μμ γ

The presence of the additional photon lifts chirality suppression

Direct measurement (= with photon detection) attempted for some time, 
but very challenging at hadron colliders:

For light leptons: enhancement w.r.t. the purely leptonic mode

In the μμ channel, total BR ~ 10–8. 
In the ee channel, enhancement is by 5 orders of magnitude.



No tracking information available for photons

Plenty of photons from π0 ‘s 

B
s
 → ℓℓ γ  offers sensitivity to C

7  
, C

9  
, C

10
  (and primed counterparts)
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B

s
 → μμ γ:  “indirect” measurement

Basic Idea  [Dettori, DG, Reboud, 2017]  

i.e. without the need to detect the additional photon 
☞

Extract  B
s
 → μμ γ  from  B

s
 → μμ  event sample, by enlarging m

μμ
  window downwards

Such approach merges the advantages of both decays:

We exploit the rich and ever increasing B
s
 → μμ  dataset

… to access  B
s
 → μμ  , that probes flavour anomalies more thoroughly

Basic Idea, expanded

The B
s
 → μμ signal window is centred around q2 = ( p

μ+
 + p

μ- 
) 2 = M

Bs
2  

Enlarging q2 towards lower and lower values, one can relate the q2  energy imbalance
to the energy of the additional, undetected 

Essential precondition: controlling all other backgrounds 



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ:  what does “γ” mean?

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ:  what does “γ” mean?

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)

The quarks in the initial B-meson Initial-State radiation (ISR)



  

D. Guadagnoli, More tests of flavour anomalies

Note

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)

The quarks in the initial B-meson Initial-State radiation (ISR)



  

D. Guadagnoli, More tests of flavour anomalies

Note

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

… but at the same time ISR and FSR amplitudes interfere

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)

The quarks in the initial B-meson Initial-State radiation (ISR)



  

D. Guadagnoli, More tests of flavour anomalies

Note

So the method is well defined only to the extent that 
ISR and FSR components in B

s
 → μμ γ  can be treated as “independent”

                         (= relevant in different regions & interference is negligible)

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

Note

So the method is well defined only to the extent that 
ISR and FSR components in B

s
 → μμ γ  can be treated as “independent”

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

… but at the same time ISR and FSR amplitudes interfere

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)

The quarks in the initial B-meson Initial-State radiation (ISR)



  

D. Guadagnoli, More tests of flavour anomalies

Note

So the method is well defined only to the extent that 
ISR and FSR components in B

s
 → μμ γ  can be treated as “independent”

                         (= relevant in different regions & interference is negligible)

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

Note

So the method is well defined only to the extent that 
ISR and FSR components in B

s
 → μμ γ  can be treated as “independent”

The FSR component can be systematically subtracted from data using a MC 
                                                                         (the same way it is in B

s
 → μμ)

  
B

s
 → μμ γ:  what does “γ” mean?

… but at the same time ISR and FSR amplitudes interfere

                         (= relevant in different regions & interference is negligible)

The photon can actually be emitted by

The final state di-μ Final-State radiation (FSR) (or bremsstrahlung)

The quarks in the initial B-meson Initial-State radiation (ISR)



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ:  ISR vs. FSR

[Dettori, DG, Reboud, 2016]

ISR and FSR are indeed well separated, and interference is always negligible



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ:  ISR vs. FSR

[Dettori, DG, Reboud, 2016]

ISR and FSR are indeed well separated, and interference is always negligible

Intuitively: FSR is large (and needs be resummed) for soft photons







  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ:  ISR vs. FSR

[Dettori, DG, Reboud, 2016]

ISR and FSR are indeed well separated, and interference is always negligible

Intuitively: FSR is large (and needs be resummed) for soft photons

ISR requires the photon to probe the Bs constituents.
It’s thus large for hard(et) photons







  

D. Guadagnoli, More tests of flavour anomalies

So this measurement gives access to the ISR spectrum

  
B

s
 → μμ γ:  ISR vs. FSR

[Dettori, DG, Reboud, 2016]

ISR and FSR are indeed well separated, and interference is always negligible

Intuitively: FSR is large (and needs be resummed) for soft photons

ISR requires the photon to probe the Bs constituents.
It’s thus large for hard(et) photons







  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]

B
s
 → μμ γ  yield expectedly large



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]

B
s
 → μμ γ  yield expectedly large

The method accesses, by construction, the high-q2 part of the spectrum







  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]

B
s
 → μμ γ  yield expectedly large

The method accesses, by construction, the high-q2 part of the spectrum




this range is the most sensitive to C

9
 & C

10



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]

B
s
 → μμ γ  yield expectedly large

The method accesses, by construction, the high-q2 part of the spectrum




this range is the most sensitive to C

9
 & C

10

LQCD B → γ  matrix elements can be most easily determined 



  

D. Guadagnoli, More tests of flavour anomalies

  
B

s
 → μμ γ: how a measurement looks like

[Dettori, DG, Reboud, 2016]

B
s
 → μμ γ  yield expectedly large

The method accesses, by construction, the high-q2 part of the spectrum

Measurement is work in progress at LHCb.




this range is the most sensitive to C

9
 & C

10

LQCD B → γ  matrix elements can be most easily determined 

Note that PDG doesn’t even quote a limit on Bs → μμ γ
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Further tests

 Extract LD effects from data

Recently, LHCb measured BR(B+ → K+ μμ) including an accurate parameterisation
of the LD component in the cc region

Idea:     Sizeable LD contributions far from the resonance region could explain away tensions

Method:      Measure m
μμ

 spectrum, including the c c resonances as a sum of BW, and fit ‘em all

Result:       BR compatible with previous measurements, and (again) smaller than SM

Similar approach as

Lyon, Zwicky, ‘14

LHCb, 1612.06764
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  Possible impact on ratio observables

rγ ≡

d BR (Bs→μμ γ)/dq2

d BR (B s→e e γ)/dq2
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Conclusions

 In flavour physics there are by now several persistent discrepancies with respect to the SM.

Data vs. theory: Discrepancies go in a consistent direction.
                            A BSM explanation is already possible within an EFT approach.

Experiments: Results are consistent between LHCb and B factories.

 It may be early to draw conclusions. But Run II and Belle II will provide a definite answer

 Timely to pursue  further tests. 

Their most convincing aspects are the following:

Data: Deviations concern two independent sets of data:  b → s  and  b → c  decays.

 Theory:  EFT makes sense rather well of data.   But hard to find convincing UV dynamics

Examples: more LUV quantities

other observables sensitive to C
9
 & C

10

extract LD effects from data
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