Footprints of LQs: from B to K rare decays

Luiz Vale Silva

University of Sussex

Apr 18th, 2018

EPJ C78 (2018) 275, in collaboration with Svjetlana Fajfer and Nejc Košnik (Institut Jožef Stefan)

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

≧▶ ◀ ≧▶ Ξ|≡ ∽�� Apr 18th, 2018 1 / 25

Outline

Pheno of two LQ models

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 2 / 25

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国社 ののの

Outline

2 $s \rightarrow d \nu \bar{\nu}$ transitions

3 Pheno of two LQ models

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 3 / 25

ELE SOC

B-physics anomalies

 $\mathsf{SM}\sim\mathsf{respects}\;\mathsf{LFU}\;(\mathsf{Lepton}\;\mathsf{Flavor}\;\mathsf{Universality})\Rightarrow {\sf R}_X^{q_{\ell\ell}^2\gg m_\ell^2}\simeq 1$

[talks by (exp) Lucio Martinez, Franco Lima, Urquijo, Patel; (theo) Matias, Neshatpour, Valli, Hurth]

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 4 / 25

Correlation with different flavor sectors

 $\Lambda^{b \rightarrow c,s}_{NP} \sim \mathcal{O}(1,100) \text{ TeV} \Rightarrow \text{direct searches,} \\ \text{low-energy precision observables}$

GIM suppression and CKM suppression:

$$\mathcal{L}_{ ext{eff}} \supset -rac{1-0.3\,i}{(180~ ext{TeV})^2}(ar{s}_L\gamma_\mu d_L)(ar{
u}_L\gamma^\mu
u_L) + ext{h.c.}$$

Correlation with different flavor sectors

 $\Lambda^{b \rightarrow c, s}_{NP} \sim \mathcal{O}(1, 100) \text{ TeV} \Rightarrow \text{direct searches,} \\ \text{low-energy precision observables}$

GIM suppression and CKM suppression:

$$\mathcal{L}_{ ext{eff}} \supset -rac{1-0.3\,i}{(180 ext{ TeV})^2}(ar{s}_L\gamma_\mu d_L)(ar{
u}_L\gamma^\mu
u_L) + ext{h.c.}$$

HERE: discuss what can be learned from rare kaon decays in some specific NP contexts

LQs: couplings to quarks and leptons \Rightarrow effects in (semi-)leptonic decays, suppressed effects in $B_s^0 - \bar{B}_s^0$

lepton LQ quark

[Bauer+'15, Medeiros V.+'15, Barbieri+'15, Fajfer+'15]

[talks by Stangl, Iyer, T. You, Greljo, Di Luzio, Nardecchia, Fuentes-Martin, Fajfer, Guadagnoli, Jung, Rodriguez Sanchez, Kirk]

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 5 / 25

Outline

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 6 / 25

ELE SOC

< ロ > < 同 > < 三 > < 三 > :

Experimental overview

Present experimental bounds

$$\mathcal{B}_{exp}(K^+ \to \pi^+ \nu \bar{\nu}) < 3.35 \times 10^{-10}$$
 @ 90 % CL [BNL-E787, E949]
 $\mathcal{B}_{exp}(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8}$ @ 90 % CL [Kek-E3912]

Luiz Vale Silva (University of Sussex)

ELE NOR

4 E

- ∢ ∃ ▶

Experimental overview

Present experimental bounds

$$egin{aligned} \mathcal{B}_{exp}(K^+ & o \pi^+
u ar{
u}) < 3.35 imes 10^{-10} @ 90 \% \ \mathrm{CL} \ \mathcal{B}_{exp}(K_L & o \pi^0
u ar{
u}) < 2.6 imes 10^{-8} @ 90 \% \ \mathrm{CL} \end{aligned}$$

[BNL-E787, E949]

[KEK-E391a]

Near/coming future

NA62/CERN: $K^{\pm} \rightarrow \pi^{\pm} \nu \bar{\nu}$; KOTO/J-PARC: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (CPV)

$$\begin{split} \mathcal{B}_{exp}(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} \ @ \ 90 \ \% \ \text{CL} & \text{[NA62, preliminary]} \\ \mathcal{B}_{exp}(K_L \to \pi^0 \nu \bar{\nu}) < 5.1 \times 10^{-8} \ @ \ 90 \ \% \ \text{CL} & \text{[KOTO]} \\ \text{NA62 and KOTO: anticipated accuracies of} \sim 10\% \end{split}$$

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 7 / 25

Theoretical overview

NLO electroweak corrections

• $\delta P_{c,u}^{\text{non. pert.}}$

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 8 / 25

[Brod+'08]

[Isidori+'05]

Impact on the SM

Main uncertainties:

[CKMfitter, preliminary]

Theoretical predictions in the SM framework

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Outline

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 10 / 25

(日) (周) (日) (日) (日) (日) (000)

Structure of LQ contributions to neutral currents

Measurements: R_K/R_K^{SM} and $R_{K^*}/R_{K^*}^{SM} < 1$

Couplings of scalar LQs to SM fermions				
	down-type	chiral	@ tree-level	
$SU(3)_C \times SU(2)_L \times U(1)_Y$	quarks	structure	$R_K/R_K^{SM},\;R_{K^*}/R_{K^*}^{SM}$	
$\mathbf{S}_{3}=(\mathbf{ar{3}},3,1/3)$	$ar{d}_L^c u_L, ar{d}_L^c \ell_L$	$ar{s}\gamma_{ ho} P_L b \cdot ar{\ell}\gamma^{ ho} P_L \ell$	< 1, < 1	
$R_2 = (3, 2, 7/6)$	$\bar{d}_L \ell_R$	$ar{s}\gamma_{ ho}P_{L}b\cdotar{\ell}\gamma^{ ho}P_{R}\ell$	pprox 1,pprox 1	
$ ilde{ extsf{R}_2} = (extsf{3}, extsf{2}, 1/6)$	$\bar{d}_R \ell_L, \bar{d}_R \nu_L$	$ar{s}\gamma_{ ho}P_{R}b\cdotar{\ell}\gamma^{ ho}P_{L}\ell$	< 1, > 1	
$ ilde{\mathcal{S}}_1 = (\mathbf{ar{3}}, 1, 4/3)$	$ar{d}_R^c \ell_R$	$ar{s}\gamma_{ ho}P_Rb\cdotar{\ell}\gamma^{ ho}P_R\ell$	pprox 1,pprox 1	
$S_1 = (\mathbf{\overline{3}}, 1, 1/3)$	$\bar{d}_L^c \nu_L$		=1,=1	
(w/ $ u_R$, also $ar{S}_1$ = ($ar{f 3}, f 1, -2/3$), and new couplings of $ ilde{R}_2$, S_1)				

- \rightarrow Tree-level: S₃

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 11 / 25

LQ contributions to neutral currents

- \rightarrow Loop-level: other LQs can also imply R_K/R_K^{SM} , $R_{K^*}/R_{K^*}^{SM} < 1$ S_3 , R_2 , S_1 [Bauer+'15, Bečirević+'16]
- \rightarrow Sacrifices "elegance" of semi-leptonic effects w/ LQs, but follows structure of the SM
- \rightarrow Conversely, it may require large couplings

Specific LQ models

- \rightarrow In the following, we consider and compare:
 - a S₃ model ("Triplet model") [Doršner+'17]
 - a R_2 model ("Doublet model")

 \rightarrow **Substantial differences:** $b \rightarrow s\ell\ell$ at different orders

- → Vector LQs: **renormalizability** requires larger spectrum [cf. talk by Di Luzio] [Barbieri+'15'16, Buttazzo+'17, Greljo+'17, Faifer+'16, Bordone+'17]
- \to In the following, focus on correlations w/ $b \to s \ell \bar{\ell}$, and $b \to s \nu \bar{\nu}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

[Bečirević+'16]

R_2 model: features

Interactions with SM fermions:

$$\begin{aligned} \mathcal{L}_{R_{2}}^{Y} &= (V_{CKM} \times g_{R})_{ij} \bar{u}^{i} P_{R} e^{j} R_{2}^{5/3} + (g_{R})_{ij} \bar{d}^{i} P_{R} e^{j} R_{2}^{2/3} \\ &+ (g_{L})_{ij} \bar{u}^{i} P_{L} \nu^{j} R_{2}^{2/3} - (g_{L})_{ij} \bar{u}^{i} P_{L} e^{j} R_{2}^{5/3} + \text{h.c.} \end{aligned}$$

$$g_{R} = 0_{3\times3}, \qquad g_{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & g_{L}^{c\mu} & g_{L}^{c\tau} \\ 0 & g_{L}^{t\mu} & g_{L}^{t\tau} \end{pmatrix}, \qquad m_{R_{2}}$$

[Bečirević+'17]

- Avoid tree-level contributions to B-decays w/ the wrong chirality
- $R_{D^{(*)}}$ not addressed $(g_R^{b\tau} \neq 0 \text{ strongly constrained})$
- Consistently avoid first generation couplings
- No tree-level contribution to $s \rightarrow d \nu \bar{\nu}$

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 14 / 25

R_2 model: phenomenology

• $(g-2)_{\mu}$ worsen by $\gtrsim 1\sigma$ (for $g_{L}^{c\mu}$, $g_{L}^{t\mu} < \sqrt{4\pi}$) • Collider bounds: $m_{R_{2}} \gtrsim 650$ GeV (assuming $t\nu$, $t\tau$ dominate)

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 15 / 25

S_3 model: features

Interactions with SM fermions:

$$\begin{split} \mathcal{L}_{S_3}^{\mathsf{Y}} &\equiv -y_{ij} \bar{d}_L^{C\,i} \nu_L^j S_3^{1/3} - (V_{CKM}^* \times y)_{ij} \bar{u}_L^{C\,i} e_L^j S_3^{1/3} \\ &- \sqrt{2} y_{ij} \bar{d}_L^{C\,i} e_L^j S_3^{4/3} + \sqrt{2} (V_{CKM}^* \times y)_{ij} \bar{u}_L^{C\,i} \nu_L^j S_3^{-2/3} + \text{h.c.} \end{split}$$

$$y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s\mu} & y_{s\tau} \\ 0 & y_{b\mu} & y_{b\tau} \end{pmatrix}, \ V_{CKM}^* \times y \approx \begin{pmatrix} 0 & \lambda y_{s\mu} & \lambda y_{s\tau} \\ 0 & y_{s\mu} & y_{s\tau} \\ 0 & y_{b\mu} & y_{b\tau} \end{pmatrix}, \ m_{S_3}$$

[Doršner+'17]

- Chiral LQ, one single coupling matrix
- With the choice $y_{d\mu} = 0 \Rightarrow$ no $s \rightarrow d\nu\bar{\nu}$ @ tree-level

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 16 / 25

S_3 model: phenomenology

•
$$R_{\nu\nu}^{(*)} = \frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})_{\mathrm{SM}}}, \ \Delta m_s(B_s^0\bar{B}_s^0)$$

- $R_{D^{(*)}}$ not accommodated
- Collider bounds on LQ pair and au au production satisfied

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 17 / 25

ELE NOR

Outline

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 18 / 25

(日) (周) (日) (日) (日) (日) (000)

Results for the R_2 model

Effects induced by muon couplings: $\{g_L^{c\mu}, g_L^{t\mu}\}_{1\sigma}$

Max. enhancement of 9% for $K^{\pm} \to \pi^{\pm} \nu \bar{\nu}$ and 5% for $K_L \to \pi^0_{\pm} \nu \bar{\nu}_{\text{sc}}$

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 19 / 25

Results for the S_3 model + $y_{d\mu}$

• Relax the initial requirement of $y_{d\mu} = 0$ (here, real)

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

↓ ∃ ↓ ∃ | = √ Q ∩

Results for the S_3 model + $y_{d\mu}$

- Relax the initial requirement of $y_{d\mu} = 0$ (here, real)
- The experimental bound of $K^{\pm} o \pi^{\pm} \nu \bar{\nu}$ sets $|y_{d\mu}| \lesssim 3 imes 10^{-4}$
- Much stronger than the LNV $au o \mu + K^0_{\mathcal{S}}$ [Davidson+'10]

A I > A I > A I > I = A I

Results for the S_3 model

• SM:
$$|V_{td}V_{ts}| \sim \lambda^5$$

• $1/\lambda^2$ enhancement

	с	t	сс	ct, tc	tt
(SM)	$g^4\lambda$	$g^4\lambda^5$			
(NP: vertex)	$g^2 \lambda y_{s\tau}^2$	$g^2 \lambda^3 y_{s\tau} y_{b\tau}$			
(NP: Box)			$g^2 \lambda y_{s\tau}^2$	$g^2 \lambda^3 y_{s\tau} y_{b\tau}$	$g^2 \lambda^5 y_{b\tau}^2$

Luiz Vale Silva (University of Sussex)

Apr 18th, 2018 21 / 25

ELE NOR

Results for the S_3 model, $y_{d\mu}^{\text{tree}} = 0$

Max. suppression of 10% for $K^{\pm} \to \pi^{\pm} \nu \bar{\nu}$ and 14% for $K_{L} \to \pi^{\pm} \nu \bar{\nu}_{\sigma_{\alpha}\sigma_{\beta}}$

Luiz Vale Silva (University of Sussex)

Rare K decays in LQ models

Apr 18th, 2018 22 / 25

Comparison

Important modulations (\gtrsim theo. unc.) also for $S_1 + S_3$: suppression of ~ 24% for $K^{\pm} \rightarrow \pi^{\pm} \nu \bar{\nu}$, ~ 34% for $K_L \rightarrow \pi^0 \nu \bar{\nu}$ [Crivellin+'17]

Comparison

Important modulations (\gtrsim theo. unc.) also for $S_1 + S_3$: suppression of ~ 24% for $K^{\pm} \rightarrow \pi^{\pm} \nu \bar{\nu}$, ~ 34% for $K_L \rightarrow \pi^0 \nu \bar{\nu}$ [Crivellin+'17]

 $(sd)(\ell\ell)$ transitions in the SM: large $\mathcal{B}(K^{\pm} \to \pi^{\pm}\ell^{+}\ell^{-})$ points to large long-distance effects from $K \to \pi\gamma^{*}$

ightarrow The SD from NP do not produce large effects to $(\mathit{sd})(\ell\ell)$

(日) (周) (日) (日) (日) (日) (000)

Conclusion

- B-physics anomalies: perhaps a true guide for extending the SM
- Need other flavor sectors to shape the SM extension
- Important exp. progress in the coming years in *K*-physics & theoretically clean observables
- Correlation among different sectors strongly depends on specific NP model: considered scalar LQs here
- Same couplings in $b \to s\mu^+\mu^-$ and/or $b \to s\nu\bar{\nu}$ also in $s \to d\nu\bar{\nu}$ for the models studied beyond the tree level
- $\bullet\,$ Found modulations of $\sim 10\%$ even for loop contributions

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Merci!

Structure of LQ contributions to neutral currents

Couplings of vector LQs to SM fermions			
	down-type	chiral	@ tree-level
$SU(3)_C \times SU(2)_L \times U(1)_Y$	quarks	structure	$R_K/R_K^{SM}, R_{K^*}/R_{K^*}^{SM}$
$U_3 = (3, 3, 2/3)$	$ar{d}_L u_L , ar{d}_L \ell_L$	$ar{s}\gamma_{ ho}P_{L}b\cdotar{\ell}\gamma^{ ho}P_{L}\ell$	$< 1, \ < 1$
$V_2 = (\bar{3}, 2, 5/6)$	$\bar{d}_R^c \nu_L, \bar{d}_R^c \ell_L,$	$ar{s}\gamma_{ ho}P_Rb\cdotar{\ell}\gamma^{ ho}P_L\ell$	< 1, > 1
	$ar{d}^c_L \ell_R$	$ar{s}\gamma_{ ho}P_{L}b\cdotar{\ell}\gamma^{ ho}P_{R}\ell$	pprox 1,pprox 1
$ ilde{V}_2 = (m{3}, 2, -rac{1}{6})$			= 1, = 1
$ ilde{U}_1=(3,1,5/3)$			= 1, = 1
$U_1 = (3, 1, 2/3)$	$\bar{d}_L \ell_L$,	$ar{s}\gamma_{ ho}P_{L}b\cdotar{\ell}\gamma^{ ho}P_{L}\ell$	< 1, < 1
	$\bar{d}_R \ell_R$	$ar{s}\gamma_{ ho}P_Rb\cdotar{\ell}\gamma^{ ho}P_R\ell$	pprox 1,pprox 1
(w/ $ u_R$, also $ar{U}_1,=({f 3},{f 1},-1/3)$, and new couplings of $ ilde{V}_2)$			

ELE NOR

Image: A match a ma

Couplings of scalar LQs to SM fermions			
l Oc	Structures of the couplings		
LQ3	down-type	up-type	
$S_3 = ({\bf \bar{3}}, {\bf 3}, 1/3)$	$\bar{d}_L^c \nu_L , \bar{d}_L^c \ell_L ,$	$\bar{u}_L^c \nu_L , \bar{u}_L^c \ell_L$	
$R_2 = (3, 2, 7/6)$	$\bar{d}_L \ell_R$,	$\bar{u}_L \ell_R, \bar{u}_R \ell_L, \bar{u}_R \nu_L$	
$ ilde{R}_2 = (3, 2, 1/6)$	$ar{d}_R\ell_L,ar{d}_R u_L$		
$\tilde{S}_1 = (\bar{3}, 1, 4/3)$	$ar{d}_R^c\ell_R$		
$S_1 = (\mathbf{\bar{3}}, 1, 1/3)$	$\bar{d}_L^c \nu_L$,	$\bar{u}_L^c \ell_L, \bar{u}_R^c \ell_R$	

Couplings of vector LQs to SM fermions			
L Oc	Structures of the couplings		
LQ3	down-type	up-type	
$U_3 = (3, 3, 2/3)$	$\bar{d}_L \nu_L , \bar{d}_L \ell_L ,$	$\bar{u}_L \nu_L , \bar{u}_L \ell_L$	
$V_2 = (\bar{3}, 2, 5/6)$	$\bar{d}_R^c \nu_L, \bar{d}_R^c \ell_L, \bar{d}_L^c \ell_R,$	$\bar{u}_L^c \ell_R$	
$ ilde{V}_2 = ({f \bar{3}}, {f 2}, -1/6)$		$\bar{u}_R^{c}\ell_L, \bar{u}_R^{c}\nu_L$	
$ ilde{U}_1 = ({f 3},{f 1},5/3)$		$ar{u}_R\ell_R$	
$U_1 = (3, 1, 2/3)$	$\bar{d}_L \ell_L , \bar{d}_R \ell_R ,$	$\bar{u}_L \nu_L$	