Scalar Leptoquarks and B anomalies

Svjetlana Fajfer

Physics Department, University of Ljubljana and Institute J. Stefan, Ljubljana, Slovenia

LIO Conference "From Flavour to New Physics, Lyon, April 18-20, 2018

Experimental status: of - B anomalies $R_{D(*)}$ and $R_{K(*)}$

Effective Lagrangian approach: $R_{D(*)}$ and $R_{K(*)}$

Scalar Leptoquarks solution of $R_{D(*)}$ and $R_{K(*)}$

Flavour constraints on LQs

Interpretation: sign of LFU violation?

Signature at LHC

B physics anomalies: experimental results ≠ SM predictions!

charged current (SM tree level)

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \mu \nu_{\mu})}$$
 3.9σ

$$\frac{BR(B_c \to J/\Psi \mu \nu_{\tau})}{BR(B_c \to J/\Psi \mu \nu_{\mu})} = 0.71 \pm 0.17 \pm 0.18$$

2017 ~2 σ LHCb result

Effective Lagrangian approach for $b \to c \tau \nu_{\tau} decay$

If NP scale is above electroweak scale, NP effective operators have to respect $SU(3) \times SU(2)_{L} \times U(1)_{Y}$

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \bar{c} \gamma_{\mu} P_L b , \bar{\nu} \gamma^{\mu} P_L \tau + \frac{1}{\Lambda} \Sigma_i c_i O_i$$

$$(\bar{c} \gamma_{\mu} P_L b) (\bar{\tau} \gamma^{\mu} P_L \nu)$$

$$(\bar{c} \gamma_{\mu} P_R b) (\bar{\tau} \gamma^{\mu} P_L \nu)$$

$$(\bar{c} P_R b) (\bar{\tau} P_L \nu)$$

$$(\bar{c} P_L b) (\bar{\tau} P_L \nu)$$

$$(\bar{c} \sigma^{\mu\nu} P_L b) (\bar{\tau} \sigma_{\mu\nu} P_L \nu)$$

$$\text{ no } \nu_R$$

P₅' in $B \to K^* \mu^+ \mu^-$ (angular distribution functions) 3 σ

$$R_{K} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [1,6] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [1,6] \text{GeV}^{2}}} = 0.745 \pm_{0.074}^{0.090} \pm 0.036$$

$$R_{K^{*}}^{\text{low}} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [0.045, 1.1] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [0.045, 1.1] \text{GeV}^{2}}} = 0.660 \pm_{0.070}^{0.110} \pm 0.024$$

$$R_{K^{*}}^{\text{central}} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [1.1,6] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [1.1,6] \text{GeV}^{2}}} = 0.685 \pm_{0.069}^{0.113} \pm 0.047,$$

$$2.2 \,\sigma - 2.4 \sigma$$

 R_{κ} and R_{κ^*} and New Physics

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,\dots,10} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right] \\ \mathcal{O}_9 &= \frac{e^2}{g^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell) \,, \qquad \mathcal{O}_{10} = \frac{e^2}{g^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell) \end{aligned}$$

Global analysis suggests no NP in

$$C_9^{\mu} = -C_{10}^{\mu} = -0.64$$

 $C_9^{\mu} = -C_{10}^{\mu} \in (-0.85, -0.50)$

Capdevila et al., 1704.05340 Similar result obtained by Altmannshofer et al, 1704.05435

How to approach to anomalies?

• Is the anomaly SM or NP?

• First step at low energies: to construct effective Lagrangian which might explain experimental data;

• Find new particle which can mimic effective Lagrangian; Check all other low energy flavour constraints, check electroweak observables, include LHC direct searches for NP;

• Make consistent model of NP!

Effective Lagrangian approach: NP in third generation

Feruglio, Paradisi, Pattori, 1606.00524; Battacharaya et al., 1412.7164; Glashow, Guadagnoli and Lane, 1411.0565 NP couples preferentially to third generation.

$$\mathcal{L}_{\rm NP} = \frac{C_1}{\Lambda^2} \left(\bar{q}_{3L} \gamma^{\mu} q_{3L} \right) \left(\bar{\ell}_{3L} \gamma_{\mu} \ell_{3L} \right) + \frac{C_3}{\Lambda^2} \left(\bar{q}_{3L} \gamma^{\mu} \tau^a q_{3L} \right) \left(\bar{\ell}_{3L} \gamma_{\mu} \tau^a \ell_{3L} \right)$$

Paradigm: only one new mediator leading to such effective Lagrangian!

Spin	Color singlet	Color tripet
0	2HDM	Scalar LQ P parity - sbottom
1	W' ,Z'	Vector LQ

1) 1974 Salam & Pati: partial unification of quark and leptons –four color charges, left-right symmetry;

2) GUT models contain them as gauge bosons (e.g. Georgi-Glashow 1974);

3) Within GUT they can be scalars too;

4) 1997 false signal et DESY (~200 GeV);

5) In recent years LQ might offer explanations of B physics anomalies;

6) LHC has bounds on the masses of LQ_1, LQ_2, LQ_3 of the order ~ 1 TeV.

Leptoquarks in R_{K} and $R_{D(*)}$

Suggested by many authors: naturally accomodate LUV and LFV

color SU(3), weak isospin SU(2) , weak hypercharge U(1)

 $Q=I_3 + Y$

S	$U(3) \times SU(2) \times U(1)$	Spin	Symbol	Type	3B + L
	$(\overline{3},3,1/3)$	0	S_3	$LL\left(S_{1}^{L} ight)$	-2
	$({f 3},{f 2},7/6)$	0	R_2	$RL(S_{1/2}^{L}), LR(S_{1/2}^{\bar{R}})$	0
L	$({f 3},{f 2},1/6)$	0	\tilde{R}_2	$RL(\tilde{S}_{1/2}^L), \ \overline{LR}$	0
	$(\overline{3},1,4/3)$	0	$ ilde{S}_1$	$RR(ilde{S}_0^R)$	-2
	$(\overline{f 3}, {f 1}, 1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}$	-2
	$(\overline{3},1,-2/3)$	0	$ar{S}_1$	\overline{RR}	-2
	$({f 3},{f 3},2/3)$	1	U_3	$LL\left(V_{1}^{L} ight)$	0
	$({f \overline{3}},{f 2},5/6)$	1	V_2	$RL(V_{1/2}^{L}), LR(V_{1/2}^{R})$	-2
	$(\overline{3}, 2, -1/6)$	1	$ ilde{V}_2$	$RL(\tilde{V}_{1/2}^L), \ \overline{LR}$	-2
Γ	$({f 3},{f 1},5/3)$	1	U_1	$RR(V_0^R)$	0
	$({f 3},{f 1},2/3)$	1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RR}$	0
	$({\bf 3},{\bf 1},-1/3)$	1	$ar{U}_1$	\overline{RR}	0

F=3B +L fermion number; F=0 no proton decay at tree level (see Assad et al, 1708.06350)

Doršner, SF, Greljo, Kamenik Košnik, (1603.04993)

Helps to know: according to Asad, Fornal Grinstein 1708.06350; proton decay at tree cannot be mediated by U(3,1,2/3).

If vector LQ is not a gauge boson – difficult to handle!

Possible to make Pati-Salam-like unified model vector LQ- gauge boson!: Di Luzio, Greljo, Nardecchia, 1708.08450; Bordone et al, 1712.01368; Callibi, Crivellin, Li, 1709.00692, Marzocca, 1803.10972. Admir's talk!

One scalar Leptoqaurk resolving both B anomalies:

(3,2,1/6)Tree level solutions for $R_{D(*)}$ and $R_{K(*)}$

Right-handed neutrino introduced LQ (3,2,1/6)

 $|M_{SM}|^2 + |M_{LQ}|^2$ Becirevic et al, 1608.08501 passes all flavor constraints, but leads to R_{\rm K*}>1!

Two LQs solution of $R_{D(*)}$ and $R_{K(*)}$

(3,3,1/3) + (3,1,-1/3) Crivellin et al, 1703.09226, Marzocca, 1803.10972.

$$\nu$$

$$b$$

$$\overline{\Phi_1 + \Phi_3}$$

$$c$$

$$b$$

$$\overline{\Phi_1 - \Phi_3}$$

$$s$$

$$b$$

$$\overline{\Phi_1 - \Phi_3}$$

$$s$$

$$b$$

$$\overline{\Phi_3}$$

$$s$$

- (3,3,1/3) alone has a proper structure according to effective Lagrangian it couples to only left-handed quarks and leptons.
- it leads to to large contribution in $B o K^{(*)}
 u ar{
 u}$

Buttazzo, Greljo, Isidori, Marzocca 1706.07808 :

$$C_S = -C_1 - 3C_3$$
, $C_T = C_1 - C_3$

radiative corrections to Z → ττ,νν
 observables are enhanced by the factor of 3, implying a ~ 1.5σ tension in R_{D(*)};

Potentially large sµ coupling disfavored by Ds/K \longrightarrow µv

Leptoquarks are natural within GUT theories!

 \tilde{R}_2

d

- GUT possible with light scalar LQs within SU(5) if there are 2 LQs (Doršner, SF, Greljo, Kamenik, Košnik 1603.04993) ;
- LQ S₃, if accommodated within SU(5) does not cause proton decay, Doršner, SF, Faroughy, Košnik 1706.07779;
- Neutrino masses might be explained with 2 light LQs within a foop (Doršner, SF, Košnik, 1701.08322);

New Proposal: Two Leptoquarks

D. Becirevic, I. Dorsner, , S. F, D. Faroughy, N. Kosnik and O. Sumensari 1804.xxxxx

Not complete V-A picture of NP!

Scalar LQ better than Vector LQ – simpler UV completion;

 $R_2 = (3,2,7/6)$ contains two states with electric charges 5/3 and 2/3.

$$\begin{aligned} \mathcal{L}_{R_2} &= (Vy_R)^{ij} \, \bar{u}_{Li} \ell_{Rj} R_2^{(5/3)} + y_R^{ij} \, \bar{d}_{Ri} \ell_{Rj} R_2^{(2/3)} & \text{Flavour basis!} \\ &+ (y_L U)^{ij} \, \bar{u}_{Ri} \nu_{Lj} R_2^{(2/3)} - y_L^{ij} \, \bar{u}_{Ri} \ell_{Lj} R_2^{(5/3)} + \text{h.c.} \\ \mathbf{S}_3 &= (\mathbf{\bar{3}}, \mathbf{3}, \mathbf{1}/\mathbf{3}) \text{ contains three states with electric charges } S_3^{2/3}, S_3^{-1/3}, S_3^{-4/3} \end{aligned}$$

$$\mathcal{L}_{S_3} = y^{ij} \, \bar{Q}_i^C i \tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.}$$

Mass eigenstate basis:

$$\mathcal{L}_{R_{2}\&S_{3}} = + (V_{\text{CKM}} y_{R} E_{R}^{\dagger})^{ij} \bar{u}_{Li}' \ell_{Rj}' R_{2}^{(5/3)} + (y_{R} E_{R}^{\dagger})^{ij} \bar{d}_{Li}' \ell_{Rj}' R_{2}^{(2/3)} + (U_{R} y_{L} U_{\text{PMNS}})^{ij} \bar{u}_{Ri}' \nu_{Lj}' R_{2}^{(2/3)} - (U_{R} y_{L})^{ij} \bar{u}_{Ri}' \ell_{Lj}' R_{2}^{(5/3)} - (y U_{\text{PMNS}})^{ij} \bar{d}_{Li}' \nu_{Lj}' S_{3}^{(1/3)} - \sqrt{2} y^{ij} \bar{d}_{Li}' \ell_{Lj}' S_{3}^{(4/3)} + \sqrt{2} (V_{\text{CKM}}^{*} y U_{\text{PMNS}})_{ij} \bar{u}_{Li}' \nu_{Lj}' S_{3}^{(-2/3)} - (V_{\text{CKM}}^{*} y)_{ij} \bar{u}_{Li}' \ell_{Lj}' S_{3}^{(1/3)} + \text{h.c.} u_{L,R}' = U_{L,R} u_{L,R}, \ d_{L,R}' = D_{L,R} d_{L,R}, \ \ell_{L,R}' = E_{L,R} \ell_{L,R}, \ \nu_{L}' = N_{L} \nu_{L} V_{\text{CKM}} = U_{L} D_{L}^{\dagger} \qquad U_{\text{PMNS}} \equiv E_{L} N_{L}^{\dagger}$$

We assume following: $y_R = y_R^T$ $y = -y_L$ from SU(5) GUT

Appealing feature: the same coupling for S₃ and R₂

$$y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \ U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \ U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Parameters: m_{R_2} , m_{S_3} , $y_R^{b au}$, $y_L^{c\mu}$, $y_L^{c au}$ and heta

Phenomenology suggest $\theta \approx \pi/2$ and y_R complex!

Explaining $R_{K(*)}$

$$R_{K(*)}(exp) < R_{K(*)}(SM)$$

Explaining $R_{D(*)}$

Not V-A explanation: T and S from R₂ very small contribution from S₃

$$\mathcal{L}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{cb} \left[(1 + g_V) (\bar{u}_L \gamma_\mu d_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_S(\mu) (\bar{u}_R d_L) (\bar{\ell}_R \nu_L) \right. \\ \left. + g_T(\mu) (\bar{u}_R \sigma_{\mu\nu} d_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.}$$

$$g_{S} = 4 g_{T} = \frac{y_{L}^{u\ell'} (y_{R}^{d\ell})^{*}}{4\sqrt{2} m_{R_{2}}^{2} G_{F} V_{ud}} \bigg|_{\mu = m_{R_{2}}} \qquad g_{V} = -\frac{y_{d\ell'} (Vy^{*})_{u\ell}}{4\sqrt{2} m_{S_{3}}^{2} G_{F} V_{ud}}$$

$${
m S_3creates}\,{
m g_v}\,\,S_3^{-2/3}$$

Important constraints

Tree level constraints

--

$$R_{e/\mu}^{K \text{ exp}} = 2.488(10) \times 10^{-5}$$

$$R_{e/\mu}^{K} = \frac{\Gamma(K^{-} \to e^{-}\bar{\nu})}{\Gamma(K^{-} \to \mu^{-}\bar{\nu})} \qquad R_{e/\mu}^{K \text{ SM}} = 2.477(1) \times 10^{-5}$$

$$R_{\mu/e}^{D^{(*)}} = \frac{\Gamma(B \to D^{(*)}\mu\bar{\nu})}{\Gamma(B \to D^{(*)}e\bar{\nu})} \qquad \text{PDG} \qquad R_{\mu/e}^{D \text{ exp}} = 0.995(45)$$

$$\mathcal{B}(\tau \to \mu\phi) < 8.4 \times 10^{-8} \qquad R_{\mu/e}^{D^{*} \text{ exp}} = 1.04(5)$$

$$\text{Loop constraints} \qquad \qquad \Delta m_{B_{s}}^{\text{exp}} = 17.7(2) \text{ ps}^{-1} \qquad (19.0 \pm 2.4) \text{ ps}^{-1}$$

$$Z \to \mu\mu, Z \to \tau\tau, Z \to \nu\nu$$

$$R_{\mu/e}^{\mu} = 0.995(45)$$

$$R_{\mu/e}^{D^{*} \text{ exp}} = 1.04(5)$$

$$\frac{g_V^{\tau}}{g_V^e} = 0.959(29), \frac{g_A^{\tau}}{g_A^e} = 1.0019(15) \qquad \frac{g_V^{\mu}}{g_V^e} = 0.961(61), \frac{g_A^{\mu}}{g_A^e} = 1.0001(13)$$
$$N_{\nu}^{\exp} = 2.9840(82)$$

Results and Predictions

$$+ g_T(\mu) \left(\bar{u}_R \sigma_{\mu\nu} d_L \right) \left(\bar{\ell}_R \sigma^{\mu\nu} \nu_L \right) \Big]$$

$$(\mu = m_{\Delta}) = 4 g_T(\mu = m_{\Delta}) = \frac{y_L^{u\ell'} (y_R^{d\ell})^*}{4\sqrt{2} m_{R_2}^2 G_F V_{ud}},$$
$$g_V = -\frac{y_{d\ell'} (Vy^*)_{u\ell}}{4\sqrt{2} m_{S_3}^2 G_F V_{ud}},$$

For $\operatorname{Re}[g_S^{\tau}] = 0$ we get $\operatorname{Im}[g_S^{\tau}]| = 0.59^{+0.13(+0.20)}_{-0.14(-0.29)}$

Constraints

 $R_{\nu\nu} = B(B \rightarrow K \nu \nu)/B(B \rightarrow K \nu \nu)^{SM}$

Predictions

Increase of $\mathcal{B}(B\to K\nu\bar{\nu})$ by $\gtrsim 50\%$ in comparison with SM value

Upper and lower bounds on the LFV rates: $B(B \rightarrow K\mu\tau) \ge 2 \times 10^{-7}$ Becirevic et al, 1608.07583

$$\mathcal{B}(B_c \to \tau \nu) < 30\%$$

Alonso, Grinstein, Camalich, 1611.06676

new FF estimate QCDSR + latt (Becirevic et al., 2018)

 $R_{J/\psi} > R_{J/\psi}^{SM}$

LHC constraints on LQ couplings

Processes in t-channel $~pp
ightarrow au^+ au^-$

Flavour anomalies generate s τ , b τ and c τ relatively large couplings. s quark pdf function for protons are ~ 3 times lagrer contribution then for b quark.

Light LQ \rightarrow impact on the shape of pp \rightarrow II distributions (Faroughy, Greljo and Kamenik, 1609.07138, Greljo and Marzocca, 1704.09015)

- Recast Atlas searches for $pp \rightarrow (Z' \rightarrow)\tau\tau$ leads to bounds on R_2 and (weak) ones on S_3 for our $\theta \approx \pi/2$
- $pp \rightarrow \mu\mu$ not very useful to us, but LQ pair-production data are
- Experimental bounds with 3.2 fb⁻¹ result in constraints not competitive with those obtained from flavor data. Projecting to 100 fb⁻¹:

Direct searches (projections to 100 fb⁻¹)

Light Leptoquarks in SU(5) GUT

- Scalars: $R_2 \in 45$, 50, $S_3 \in 45$. SM matter fields in 5_i and 10_i ;
- R_2 does not have diquark couplings no proton decay. Operators $10_i 10_j 45$ Might lead to proton decay (Dorsner, SF, Kosnik, 1701.08322).

Available operators

$$\begin{aligned} \mathbf{10}_{i}\mathbf{5}_{j}\underline{45} &: \quad y_{2\ ij}^{RL}\overline{u}_{R}^{i}R_{2}^{a}\varepsilon^{ab}L_{L}^{j,b}, \quad y_{3ij}^{LL}\overline{Q^{c}}_{L}^{i,a}\varepsilon^{ab}(\tau^{k}S_{3}^{k})^{bc}L_{L}^{j,c} \\ \mathbf{10}_{i}\mathbf{10}_{j}\underline{50} &: \quad y_{2\ ij}^{LR}\overline{e}_{R}^{i}R_{2}^{a}*Q_{L}^{j,a} \end{aligned}$$

- by breaking SU(5) to SM the two R_2 's mix one can be light and the other (very) heavy.
- the Yukawa couplings determined from flavor physics remain perturbative (< $\sqrt{4\pi}$) up to the GUT scale;

Summary

- Building a viable model which accommodates B-physics anomalies and remains consistent with all other measured flavor observables is difficult;
- We propose a minimalistic model with two light (O(1 TeV)) scalar leptoquarks. Model passes all constraints and satisfactorily accommodates B-physics anomalies. (g_s complex, i.e. one Yukawa must be complex - e.g. $y^{b\tau}_R$);
- Model is of "V A" structure in describing b \rightarrow sll, but it is NOT for b \rightarrow clv. At $\mu = m_{R2}$, effective b \rightarrow c couplings satisfy $g_S = -g_P = 4g_T$;
- Our model is GUT inspired and allows for unification with only two LQ's. Yukawa couplings remain perturbative after 1-loop running to Λ_{GUT} ;
- Results of the direct LHC searches might soon become relevant constraints too. Opportunities for direct searches at LHC!

Thanks!

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong. "

Richard P. Feynman

SU(5) GUT with (3,3,1/3) + (3,2,1/6) Doršner, SF, Faroughy, Košnik

- GUT possible with light scalar LQs within SU(5) if there are 2 LQs (Doršner, SF, Greljo, Kamenik, Košnik 1603.04993) ;
- LQ S₃, if accommodated within SU(5) does not cause proton decay;
- Neutrino masses might be explained with 2 light LQs within a loop (Doršner, SF, Košnik, 1701.08322);

Constraints from flavor observables

 $(g-2)_{\mu}$ $B_c \rightarrow \tau \nu$ $B \to K^{(*)} \nu \bar{\nu}$ $B_{s}^{0} - \bar{B}_{s}^{0}$ $B \to D \mu \nu_{\mu}$ $K \to \mu \nu_{\mu}$ $D_{d,s} \rightarrow \tau, \mu \nu$ $K \to \pi \mu \nu_{\mu}$ $W \to \tau \bar{\nu}, \ \tau \to \ell \bar{\nu} \nu$ $Z \to b\bar{b} \qquad Z \to l^+ l^-$

Becirevic et al, 1608.07583, 1608.08501 Alonso et al, 1611.06676,...

 $R_{D(*)}$ is resolved in hatched (2 σ) and doubly hatched (1 σ) regions, the b \rightarrow sµµ puzzle is resolved in dashed-hatched region at 1 σ . Region below the black line with a hatching is in 1 σ agreement with Rµ/e. Recent update on SM value of R_{D(*)}

Bigi, Gambino, Schacht 1707.09509

"Luke's theorem does not protect the form factors from $1/m^2$ corrections, it is therefore natural to expect $1/m^2$ corrections of order 10-20%, and one cannot exclude that occasionally they can be even larger".

 $A_1(1) = 0.857(41)$ $A_1(1) = 0.906(13)$

approach now includes HQET constraints with realistic uncertainties and improves on the CLN parametrization in several ways. Belle: 1608.06931

-0.17(35337)

	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L} u)$			$({f 1},{f 3})_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W_\mu'$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L} u)$				
\mathcal{O}_{S_R}	$\left(ar{c}P_Rb ight)\left(ar{ au}P_L u ight)$				$(\lambda - 1) + \lambda - (1 + \lambda) \overline{a} $
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{ au}P_L u)$			$(1, 2)_{1/2}$	$(\lambda_d q_L a_R \phi + \lambda_u q_L u_R i \tau_2 \phi' + \lambda_\ell \ell_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
$\mathcal{O}'_{\mathcal{V}}$	$(\bar{\tau}\gamma_{\mu}P_{I}b)(\bar{c}\gamma^{\mu}P_{I}\nu)$	\longleftrightarrow	Oul	$({f 3},{f 3})_{2/3}$	$\lambda ar q_L oldsymbol{ au} \gamma_\mu \ell_L oldsymbol{U}^\mu$
\mathbf{v}_{V_L}	$(\prime \prime \mu \Gamma L \sigma) (\circ \prime \Gamma L \nu)$	· · /	\mathcal{O}_{V_L}	(9.1)	$() \overline{z} \rightarrow (l + \tilde{)} \overline{d} \rightarrow (c +) U^{\mu}$
\mathcal{O}_{V_R}'	$(\bar{ au}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$\langle 0, 1 \rangle_{2/3}$	$(\lambda q_L \gamma_\mu \ell_L + \lambda a_R \gamma_\mu e_R) U'$
\mathcal{O}_{S_R}'	$\left(ar{ au}P_Rb ight)\left(ar{c}P_L u ight)$	\longleftrightarrow	$-rac{1}{2}\mathcal{O}_{V_R}$		
\mathcal{O}_{S_L}'	$\left(ar{ au}P_Lb ight)\left(ar{c}P_L u ight)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$({f 3},{f 2})_{7/6}$	$(\lambda ar{u}_R \ell_L + ilde{\lambda} ar{q}_L i au_2 e_R) R$
\mathcal{O}_T'	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		
\mathcal{O}_{V_L}''	$(ar{ au}\gamma_{\mu}P_{L}c^{c})(ar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-\mathcal{O}_{V_R}$		
\mathcal{O}_{V_R}''	$\left(ar{ au} \gamma_{\mu} P_R c^c ight) \left(ar{b}^c \gamma^{\mu} P_L u ight)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(ar{3}, 2)_{5/3}$	$(\lambda \bar{d}_R^c \gamma_\mu \ell_L + \tilde{\lambda} \bar{q}_L^c \gamma_\mu e_R) V^\mu$
$\mathcal{O}_{S_R}^{\prime\prime}$	$\left(ar{ au}P_Rc^c ight)\left(ar{b}^cP_L u ight)$	\longleftrightarrow	$\frac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(ar{3},3)_{1/3}$	$\lambdaar{q}_L^c i au_2 oldsymbol{ au} \ell_L oldsymbol{S}$
$\mathcal{O}_{S_L}^{\prime\prime}$	$\left(ar{ au}P_Lc^c ight)\left(ar{b}^cP_L u ight)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$	$\Big angle \left. ig angle (ar{f 3}, f 1)_{1/3} ight.$	$(\lambda \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
${\cal O}_T''$	$\left \left(\bar{\tau} \sigma^{\mu\nu} P_L c^c \right) \left(\bar{b}^c \sigma_{\mu\nu} P_L \nu \right) \right.$	\longleftrightarrow	$-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$		

From Freytsis, Ligeti, and Ruderman, arXiv:1506.08896 Comment: neutrino SM-like!