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Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-
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FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.
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NP option?

BSM theorist toolbox
• SMEFT, Flavour symmetries 
• Explicit models: Extended 

gauge sector, etc.
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New mass scale?

[Presumably tree-level generated]
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• Large NP contribution required

New Physics

• Tree-level process 
• Mild CKM suppression
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3. A particularly restrictive scenario, that can be implemented both in the case of LQ or

colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that

there exists a flavour basis where the NP interaction is completely aligned along the

flavour singlets. For both mediators, in this specific limit one arrives to the prediction

λℓ
µµ > 0.

In order to reduce the number of free parameters, in eq. (2.1) we assume the same

flavour structure for the two operators. This condition is realised in specific simplified

models, but it does not hold in general. The consequences of relaxing this assumption are

discussed in section 3 in the context of specific examples. Finally, motivated by the absence

of deviations from the SM in CP-violating observables, we assume all the complex phases,

except the CKM phase contained in the Vq spurion, to vanish (as shown in appendix A,

this implies λq
bs = λq

sb and λℓ
τµ = λℓ

µτ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies,

we perform a fit to low-energy data with four free parameters: CT , CS , λ
q
sb, and λℓ

µµ, while

for simplicity we set λℓ
τµ = 0.1 The set of experimental measurements entering the fit,

together with their functional dependence on the fit parameters, is discussed in length in

appendix B. In particular, we take into account the LFU tests in the charged-current semi-

leptonic observables Rτℓ
D(∗) and Rµe

b→c, global fits of b → sµµ processes (including the LFU

ratios Rµe
K(∗) and the angular observables) along the direction ∆Cµ

9 = −∆Cµ
10 [36–42], and

limits on B(B → K∗νν̄) [43]. We also include a set of observables sensitive to the purely-

leptonic and electroweak operators generated by the renormalisation-group running of the

semi-leptonic operators from the scale Λ down to the electroweak scale. The most notable

effects are the corrections to the Z → τ τ̄ effective couplings, to the invisible Z decay width,

and to the LFU (Rτℓ
τ ) and LFV (τ → 3µ) tests in τ decays [34, 35]. The matching scale

is set to Λ = 2TeV in the fit. The results change only slightly using Λ = 1TeV instead,

relaxing the impact of the loop-induced constraints. The observables considered in the

fit are summarised in table 1, together with their approximate dependence on the EFT

parameters. In order to fulfil the condition in eq. (2.3) we impose |λq
sb| < 5|Vcb|.

We minimise the total χ2 function to find the best-fit point and the corresponding

confidence level intervals. The result are presented as 2D plots after marginalising over the

other two parameters (see figure 1). The main observations can be summarised as follows.

1. Because of radiative constraints, the fit favours sizeable values of λq
sb/V

∗
ts ≈ −λq

sb/Vcb,

which allow to lower the value of CT,S (i.e. to increase the scale of NP) keeping

fixed the contribution to Rτℓ
D(∗) (see the bottom-right panel of figure 1). This can

be understood from the approximated expression for Rτℓ
D(∗) (see appendix B for the

exact formula used in the numerical fit),

Rτℓ
D(∗) ≈ 1 + 2CT

(
1− λq

sb

V ∗
tb

V ∗
ts

)
= 1.237± 0.053 , (2.4)

1We explicitly verified that a nonzero λτµ has no impact on the fit results.
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…

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Here, E and E
0
are the energies of the incoming and outgoing particles and E = E
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due to the
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Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:
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2m2
V

h
(V �q)ij�
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j
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i
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ij
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2.2 Step II: simplified dynamical model

In order to generate �L(T )
4f in a dynamical way, we introduce the heavy spin-1 triplet, V a

µ

(a = 1, 2, 3), following the general simplified Lagrangian proposed in Ref. [42]. By means of
this approach we can describe both models in which the new vector is weakly coupled, such as
gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
simplified Lagrangian reads

LV = �1

4
D[µV

a

⌫]D
[µV ⌫]a +

m2
V

2
V a

µ V
µa + gHV a

µ (H
†T ai

$
Dµ H) + V a

µ J
a

µ , (12)

where T a = �a/2, D[µV
a

⌫] = DµV a
⌫ �D⌫V a

µ and DµV a
⌫ = @µV a

⌫ + g✏abcW b
µV

c
⌫ .

3

By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian

Ld=6
e↵ = � 1

2m2
V

Ja

µJ
a

µ � g2
H

2m2
V

(H†T ai
$
Dµ H)(H†T ai

$
Dµ H)� gH

m2
V

(H†T ai
$
Dµ H)Ja

µ . (13)

By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply

�g2
H
v2

4m2
V

✓
m2

WW+
µ W�

µ +
m2

Z

2
ZµZµ

◆✓
1 +

h

v

◆4

. (14)

This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
W v

2
/m

4
V )

5
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of the Z 0 ! ⌧+⌧� branching ratio. The tension can be further reduced in the limit where the
assumption of narrow resonances (� ⌧ M), that is implicit in all present direct searches, no
longer holds.

2 The model

2.1 Step I: four-fermion operators

Our main assumption is that all the non-standard four-fermion interactions can be described by
the following e↵ective Lagrangian

�L(T )
4f = � 1

2m2
V

Ja

µJ
a

µ , (4)

where Ja
µ is a fermion current transforming as a SU(2)L triplet, built in terms of SM quarks

and lepton fields:

Ja

µ = gq�
q

ij

⇣
Q̄i

L�µT
aQj

L

⌘
+ g`�

`

ij

⇣
L̄i

L�µT
aLj

L

⌘
. (5)

Here �q,` are Hermitian flavor matrices and, by convention, �q

33 = �`

33 = 1.
We define Qi

L
and Li

L
to be the quark and lepton electroweak doublets in the flavor basis

where down-type quarks and charged-leptons are diagonal. We assume an approximate U(2)q ⇥
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• Degenerate charged W’± and neutral Z’

• Quark FV controlled by a single matrix 

quark x lepton

lepton x lepton

quark x quark

Among the four-fermion operators generated by the model, the ones most relevant to flavor
phenomenology are:
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ūiL�µd

j

L

⌘⇣
¯̀a
L�µ⌫

b

L

⌘
+ h.c.

i
, (7)

�L(T )
FCNC = � gqg`

4m2
V

�`

ab

h
�q

ij

⇣
d̄iL�µd

j

L

⌘
� (V �qV †)ij

⇣
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2.2 Step II: simplified dynamical model
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gauge extension of the SM, and strongly coupled models, such as Composite Higgs models. The
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⌫ �D⌫V a

µ and DµV a
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⌫ + g✏abcW b
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c
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By integrating out at the tree-level the heavy spin-1 triplet and keeping only e↵ective oper-
ators of dimension  6, we obtain the e↵ective Lagrangian
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By construction, the first term is �L(T )
4f in Eq. (4). The second term, in the unitary gauge, is

simply
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This term induces an unphysical (custodially-invariant) shift in the W - and Z-boson masses,4.
that can be reabsorbed by a redefinition of v, and deviations in the Higgs interactions to W
and Z bosons. The latter are well within the existing bounds for the relevant set of parameters.

3With respect to Ref. [42] we dropped interaction terms with two or more insertions of V
a

µ . While such
terms can be relevant for double production, they do not contribute to the low-energy e↵ective Lagrangian at the
dimension-6 level and are thus largely unconstrained by low-energy data.

4Within the full model of Eq. (12) this corresponds to a mass mixing between the SM EW gauge bosons and
the heavy vector triplet. The relative shift in the heavy vector masses mV is only of O(g2Hm

2
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –

FCNC limits
1)

2)

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
tively by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1 the gauge couplings and T

↵
, T

a
, T

i
, Y

0

the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,

where SU(3)4⇥U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15+Y
0, with T

15 = 1
2
p
6
diag(1, 1, 1,�3).

Bs $ B̄s (23)
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Low scale!
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Radiative EW effects

[Feruglio, Paradisi, Pattori],
Phys. Rev. Lett. 118 (2017), no. 1 011801 
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Figure 3: Cross-sections for single on-shell Z0 production via
bottom-bottom fusion at the 13 TeV LHC. The predictions
obtained in the 5-flavor scheme at LO and NLO in QCD are
shown in green and red shaded bands, respectively. See text
for details.

renormalisation scales within µF , µR 2 [0.5, 2]M , the sec-
ond are given by the 68% CL ranges when averaging over
the PDF set. The total uncertainty is obtained by adding
the perturbative and pdf uncertainties in quadrature. We
observe that at low Z

0 masses, perturbative uncertainty
dominates, while above ⇠ 1 TeV (0.5 TeV), the pdf un-
certainty takes over at LO (NLO). Our numerical results
and findings are consistent with those that have recently
appeared in the literature for specific Z

0 masses and SM-
like couplings [50]. Similar results are found for 8TeV
pp colisions. In setting bounds, we therefore rescale the
LO simulation results to NLO production cross-section
by applying the corresponding K-factor shown in Fig. 3
(bottom) at the lower factorization, renormalization and
68% CL PDF uncertainty ranges.

The resulting 95% CL upper limits on the |gbg⌧ | ⇥

v
2
/M

2
Z0 for a given Z

0 mass and total decay width, after
recasting ATLAS 8 TeV [42] (upper plot), 13 TeV with
3.2 fb�1 [43] (middle plot) and 13 TeV with 13.2 fb�1 [45]
(lower plot) ⌧

+
⌧
� searches, respectively, are shown in

Fig. 4 and marked with red isolines. Note that this
way of presenting results is independent of the assump-
tion on the existence of extra Z

0 decay channels. The
white region with gray border is not constrained since
the assumed total width there is smaller than the mini-
mum possible sum of the partial widths to bb̄ and ⌧

+
⌧
�

computed at the current experimental upper bound on
|gbg⌧ |/M

2
Z0 . These exclusions are to be compared with

the preferred value from the fit to the R(D(⇤)) anomaly,
|gbg⌧ | ⇥ v

2
/M

2
Z0 = (0.13 ± 0.03), indicated in green (1�)
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Figure 4: Recast of ATLAS ⌧
+
⌧
� searches at 8 TeV [42] (up-

per plot) 13 TeV with 3.2 fb�1 [43] (middle plot) and 13 TeV
with 13.2 fb�1 [45] (lower plot) as exclusion limits on the
bb̄ induced spin-1 ⌧

+
⌧
� resonance (bb̄ ! Z

0 ! ⌧⌧). Iso-
lines shown in red represent upper limits on the combination
|gbg⌧ |⇥ v

2
/M

2
Z0 as a function of the Z

0 mass and total width.
The R(D(⇤)) preferred regions |gbg⌧ |⇥v

2
/M

2
Z0 = (0.13±0.03)

at 68% and 95% CL are shaded in green and yellow, respec-
tively.

and yellow (2�) shaded regions in the plot.
To conclude, for relatively heavy vectors MW 0 &

500 GeV within the vector triplet model, the resolution of
the R(D(⇤)) anomaly and consistency with existing ⌧

+
⌧
�

resonance searches at the LHC require a very large Z
0 to-

tal decay width. Perturbative calculations arguably fail
in this regime. In other words, within the weakly cou-

Figure 5: Impact of one-loop-triggered constraints when addressing the B anomalies through left-
handed currents, for two di↵erent C1 vs. C3 configurations (left : C1 = 0, right : C1 = C3). For

C1 = C3, simultaneously imposing all bounds is actually equivalent to impose R⌧/`

⌧ alone. In the
scan the parameters varied in the following ranges: C1,3/⇤2

2 {�4, 4} TeV�2, ⇤ 2 {1, 10} TeV,

|�d,e

23 | 2 {0, 0.5}. All bounds refer to 2� uncertainties.

Figure 6: Left (right): Correlation Br(⌧ ! 3µ) vs. Br(B ! K⌧µ) (Br(⌧ ! 3µ) vs. Br(⌧ !

µ⇢)) within our model, while satisfying all other bounds but R⌧/`

D(⇤) , for two di↵erent C1 vs. C3

configurations. In the scan the parameters varied in the following ranges: C1,3/⇤2
2 {�4, 4} TeV�2,

⇤ 2 {1, 10} TeV, |�e

23| 2 {0, 0.5}, �d

23 2 {�0.2,�0.01}. All bounds refer to 2� uncertainties.
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Challenges for Model Builders?

R(D(*))

FCNC

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
tively by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1 the gauge couplings and T

↵
, T

a
, T

i
, Y

0

the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,

where SU(3)4⇥U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15+Y
0, with T

15 = 1
2
p
6
diag(1, 1, 1,�3).

Bs $ B̄s (23)
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Working example I

[AG, Ben Stefanek] 
1802.04274

  [Buttazzo, AG, Isidori, Marzocca] 
JHEP 1711 (2017) 044

[Di Luzio, AG, Nardecchia] 
Phys.Rev. D96 (2017) 115011

‘4321’

Leptoquark option?
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Reconsider?

Strategy: Dynamical suppression in FCNC
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Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.

Le↵ � �
1

v2
CT�

q
ij (Q̄i

L�µ�
a
Q

j
L)(L̄

3
L�

µ
�
a
L
3
L) , (21)

as

|�
q
sb| . 0.1|Vts| (22)

Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
tively by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1 the gauge couplings and T

↵
, T

a
, T

i
, Y

0

the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,

where SU(3)4⇥U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15+Y
0, with T

15 = 1
2
p
6
diag(1, 1, 1,�3).

Bs $ B̄s (23)
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],

i.e. setting a hard cut-off Λ on the quadratically divergent ∆F = 2 (down-type) amplitudes,

leads to

∆L(∆B=2) = C(U)
0

(V ∗
tbVti)2

32π2v2
(
b̄Lγµd

i
L

)2
, C(U)

0 = C2
U

(
λq
bs

Vts

)2
Λ2

2v2
. (3.4)

As already pointed out in section 2.3, the value of C(U)
0 should not exceed O(10%) given

the experimental constraints on ∆MBs,d (for comparison, C(SM)
0 = (4πα/s2W )S0(xt) ≈ 1.0,
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Figure 2: Left: Prediction for �Cµ
9 = ��Cµ

10 (following from Rµe
K(⇤)) and R⌧`

D(⇤) for a randomly
chosen set of points within the 1� preferred region of the EFT fit: the blue points are obtained setting
|�q

sb| < 5|Vcb|, while the green points are obtained setting the tighter condition |�q
sb| < 2|Vcb| in the fit.

The red cross denotes the 1� experimental constraint. Right: expectations for B(B ! K(⇤)⌫⌫̄) and
B(B ! K(⇤)⌧ ⌧̄) within the 1� preferred values of the EFT fit, again for �q

sb < 5Vcb (blue) and �q
sb < 2Vcb

(green).

the context of an explicit vector leptoquark model in Section 3.1. Another constraint on the
size of CS,T comes from the study of perturbative unitarity in 2 ! 2 scattering processes [45].
Similarly to the one from direct searches, this bound is relevant for small �q

bs
and large CS,T ,

while it is easily satisfied in the region chosen by our EFT fit.
As far as other low-energy observables are concerned, the most problematic constraint is

the one following from meson-antimeson mixing. On the one hand, given the symmetry and
symmetry-breaking structure of the theory, we expect the underlying model to generate an
e↵ective interaction of the type

�L(�B=2) = CNP
0

(V ⇤
tb
Vti)2

32⇡2v2
�
b̄L�µd

i

L

�2
, CNP

0 = O(1)⇥
32⇡2v2

⇤2
0

����
�q

sb

Vcb

����
2

. (6)

The preferred values of ⇤0 and �q

sb
from the EFT fit yield CNP

0 = O(100), while the experimental
constraints on�MBs,d require C

NP
0 to be at mostO(10%). This problem poses a serious challenge

to all models where�F = 2 e↵ective operators are generated without some additional dynamical
suppression compared to the semi-leptonic ones. A notable case where such suppression does
occur are models with LQ mediators, where �F = 2 amplitudes are generated only beyond the
tree level.

An alternative to avoid the problem posed by �F = 2 constraints is to abandon the large �q

sb

scenario preferred by the EFT fit, and assume |�q

sb
| . 0.1⇥ |Vcb|. In this limit the contribution to

(down-type)�F = 2 amplitudes is suppressed also in presence of tree-level amplitudes. However,
in order to cure the problem of the EFT fit, in this case one needs additional contributions to
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Combined 
explanation

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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chosen set of points within the 1� preferred region of the EFT fit: the blue points are obtained setting
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sb| < 5|Vcb|, while the green points are obtained setting the tighter condition |�q
sb| < 2|Vcb| in the fit.

The red cross denotes the 1� experimental constraint. Right: expectations for B(B ! K(⇤)⌫⌫̄) and
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suppression compared to the semi-leptonic ones. A notable case where such suppression does
occur are models with LQ mediators, where �F = 2 amplitudes are generated only beyond the
tree level.

An alternative to avoid the problem posed by �F = 2 constraints is to abandon the large �q
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scenario preferred by the EFT fit, and assume |�q
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| . 0.1⇥ |Vcb|. In this limit the contribution to
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
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 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but
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Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
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 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.
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mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.
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As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U
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structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is
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) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
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The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1
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U †
1,µνU
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iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],

i.e. setting a hard cut-off Λ on the quadratically divergent ∆F = 2 (down-type) amplitudes,

leads to

∆L(∆B=2) = C(U)
0

(V ∗
tbVti)2

32π2v2
(
b̄Lγµd

i
L

)2
, C(U)

0 = C2
U

(
λq
bs

Vts

)2
Λ2

2v2
. (3.4)

As already pointed out in section 2.3, the value of C(U)
0 should not exceed O(10%) given

the experimental constraints on ∆MBs,d (for comparison, C(SM)
0 = (4πα/s2W )S0(xt) ≈ 1.0,
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models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents
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The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.
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As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)

– 10 –

NP scale
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12
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Working example II

  [AG, Robinson, 
Shakya, Zupan] 

1804.04642

‘3221’

n � 2 (64)

b ! c⌧ ⌫̄⌧ (65)

b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)

v/

p
CT ⇡ 0.7 TeV (68)

�b⌧ = 1 (69)

W
0
= (1,1,+1) (70)

7

+ light

n � 2 (64)

b ! c⌧ ⌫̄⌧ (65)

b ! sµµ̄ (66)

L � W
0aµ

J
a
µ (67)

v/

p
CT ⇡ 0.7 TeV (68)

�b⌧ = 1 (69)

W
0
= (1,1,+1) (70)

NR = (1,1, 0) (71)
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Figure 1. The �2
/dof distribution (blue) for the fit of the R(D(⇤)) predictions in the QVR e↵ective

theory to the current world average [7]. Also shown (shaded orange) are exclusion regions for
Br[Bc ! ⌧⌫] & 5%.
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Figure 2. Kinematic distributions in the B rest frame for couplings ranging over C23,3 2 [0.26, 0.66]
(gray regions) with phase space cuts (2.9), for B ! (D⇤

! D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ (top row) and
B ! D(⌧ ! `⌫̄`⌫⌧ )⌫̄ (bottom row). The blue (red) dashed curves show the SM (SM+W

0 best fit,
C23,3 = 0.46). [JZ: If we put this in appendix, the plots can be bigger?] [DR: This should
be in the main text. Just make them bigger :)]

choosing a phase convention in which Vcb is real. We work in the mass basis, such that

setting i = 2, j = 3, k = 3 in eq. (2.3) generates the operator
�
c̄R�

µ
bR

��
⌧̄R�µNR

�
. The

definition for ⇤e↵ in (2.4) is chosen such that the rate for the B ! D
(⇤)

⌧N̄R decay is

normalized to the SM rate for the B ! D
(⇤)

⌧ ⌫̄ process at C23,3 = 1. The B ! D
(⇤)

⌧ ⌫̄

decays become an incoherent sum of two contributions: from the SM decay, b ! c⌧ ⌫̄⌧ , as

well as from the new decay channel, b ! c⌧N̄R. The NP contributions therefore necessarily

increase the both B ! D
(⇤)

⌧ ⌫̄ branching ratios above the SM expectation, in agreement

with the direction of the experimental observations for R(D(⇤)).

– 4 –
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‘3221’ model

vEW

~TeV

Extended gauge symmetry

In each plot, we show the variation in shape over the range C23,3 = 0.46 ± 0.2, and for

the SM (C23,3 = 0). One sees that the variation in shape is small. The variation in other

observables, such as q
2, is not shown, since it is even smaller. This gives us good confi-

dence that the measured R(D(⇤)) in eq. (2.5) well-approximate the values that would be

measured for an SM+W
0 model template.

[todo]Upper bound on mW 0 from the decay width ?

3 Explicit UV completion: The ‘3221’ gauge model

A massive vector requires an ultraviolet completion. A minimal renormalisable and per-

turbative NP model that can accommodate the above explanation of R(D(⇤)) anomaly

through W
0 mediator requires extending both the SM gauge group and the field content.

The new gauge group is SU(3)c ⇥ SU(2)L ⇥ SU(2)V ⇥ U(1)0, while the field content is

extended by a right-handed neutrinos ⌫ 0
R
, and by new vector-like quarks and leptons, Q0

L,R

and L
0
L,R

, as well as a new scalar representation HV responsible for the symmetry breaking

to SM. In the remainder of the Section, we give a detailed account of these extensions,

while the related phenomenology is given in Section 4.

Gauge symmetry and the spontaneous symmetry breaking pattern. The

extended gauge group is taken to be G ⌘ SU(3)c ⇥ SU(2)L ⇥ SU(2)V ⇥ U(1)0. At around

TeV scale, this is spontaneously broken down to the SM gauge group, GSM ⌘ SU(3)c ⇥

SU(2)L ⇥ U(1)Y . Our notation for the gauge fields in the G-symmetric phase is G
a
µ, W

i
µ,

W
0j
µ , and B

0
µ, respectively, with gs, gL, gV , and g

0 the corresponding gauge couplings. The

generators in the fundamental representation of SU(3) (SU(2)) group are �a
/2 (�i

/2) with

�
a (�i) the Gell-Mann (Pauli) matrices, where the indices take values a = 1, . . . , 8, and

i, j = 1, 2, 3. We use the phase convention in which the covariant derivative is, for example

for the scalar field HV ⇠ (1,1,2, 1/2), given by Dµ ⌘ @µ � igV W
0j
µ �

j
/2� ig

0
B

0
µ/2.

The gauge group GSM is spontaneously broken in two steps, first G ! GSM and then

GSM ! U(1)em. The first step of spontaneous symmetry breaking, G ! GSM, occurs when

the scalar HV obtains a nonzero vacuum expectation value (vev),

hHV i =
1
p
2

 
0

vV

!
. (3.1)

This results in three Goldstone modes being eaten by the W 0± and Z
0 gauge bosons, giving

W
0±
µ =

1
p
2
(W 01

µ ⌥ iW
02
µ ) , with mass mW 0 =

gV vV

2
,

Z
0
µ = cos ✓V W

03
µ � sin ✓V B

0
µ , with mass mZ0 =

mW 0

cos ✓V
,

(3.2)

where tan ✓V = g
0
/gV . In the following, we will use the notation

cV ⌘ cos ✓V , sV ⌘ sin ✓V and tV ⌘ tan ✓V . (3.3)

The HV vev breaks SU(2)V ⇥ U(1)0 ! U(1)Y . The unbroken generator, Y = T
3

V
+ Y

0,

corresponds to the massless SM hypercharge gauge boson, Bµ = sV W
03
µ + cV B

0
µ. Here, T 3

V

– 6 –

3 broken generators 

W’ Z’

2

However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.

III. GAUGE LEPTOQUARK MODEL

Let us consider the gauge group G ⌘ SU(4) ⇥
SU(3)0 ⇥ SU(2)L ⇥ U(1)0, and denote respectively
by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1

the gauge couplings and T
↵
, T

a
, T

i
, Y

0 the gener-
ators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8,
i = 1, 2, 3. The normalization of the genera-
tors in the fundamental representation is fixed by
TrT↵

T
� = 1

2�
↵� , etc. The color and hyper-

charge factors of the SM gauge group GSM ⌘

SU(3)c ⇥ SU(2)L ⇥ U(1)Y are embedded in the
following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag
and U(1)Y = (U(1)4 ⇥ U(1)0)diag, where SU(3)4 ⇥

U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15 + Y
0,

with T
15 = 1

2
p
6
diag(1, 1, 1,�3).

The spontaneous breaking G ! GSM happens via
the scalar representations ⌦3 =

�
4, 3, 1, 1/6

�
and

⌦1 =
�
4, 1, 1,�1/2

�
, which can be represented re-

spectively as a 4 ⇥ 3 matrix and a 4-vector trans-

2 The resolution of both the RD(⇤) and RK(⇤) anomalies via
a PS leptoquark Uµ was recently put forth in Ref. [46]. In
this respect, we reach a di↵erent conclusion.

forming as ⌦3 ! U
⇤
4⌦3U

T
30 and ⌦1 ! U

⇤
4⌦1 under

SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [52]

h⌦3i =

0

BB@

v3p
2

0 0

0 v3p
2

0

0 0 v3p
2

0 0 0

1

CCA , h⌦1i =

0

BB@

0
0
0
v1p
2

1

CCA , (1)

ensuring the proper G ! GSM breaking. Un-
der GSM the scalar representations decompose as
⌦3 = (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦1 =
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2
v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z

0 =
(1, 1, 0) under GSM. From the scalar kinetic terms
one obtains [51, 52]

MU = 1
2g4

q
v
2
1 + v

2
3 , (2)

Mg0 = 1p
2

q
g
2
4 + g

2
3v3 , (3)

MZ0 = 1
2

q
3
2

q
g
2
4 +

2
3g

2
1

q
v
2
1 +

1
3v

2
3 . (4)

Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read

U
1,2,3
µ =

1
p
2

�
H

9,11,13
µ � iH

10,12,14
µ

�
, (5)

g
0a
µ =

g4H
a
µ � g3G

0a
µp

g
2
4 + g

2
3

, Z
0
µ =

g4H
15
µ �

q
2
3g1B

0
µ

q
g
2
4 +

2
3g

2
1

,

while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM

prior to electroweak symmetry breaking

g
a
µ =

g3H
a
µ + g4G

0a
µp

g
2
4 + g

2
3

, Bµ =

q
2
3g1H

15
µ + g4B

0
µ

q
g
2
4 +

2
3g

2
1

.

The matching with the SM gauge couplings reads

gs =
g4g3p
g
2
4 + g

2
3

, gY =
g4g1q
g
2
4 +

2
3g

2
1

, (6)

where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the

SSB:

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.

Le↵ � �
1

v2
CT�

q
ij (Q̄i

L�µ�
a
Q

j
L)(L̄

3
L�

µ
�
a
L
3
L) , (21)

as

|�
q
sb| . 0.1|Vts| (22)

Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
tively by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1 the gauge couplings and T

↵
, T

a
, T

i
, Y

0

the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,

where SU(3)4⇥U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15+Y
0, with T

15 = 1
2
p
6
diag(1, 1, 1,�3).
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3 Explicit UV completion: The ‘3221’ gauge model

A massive vector requires an ultraviolet completion. A minimal renormalisable and per-

turbative NP model that can accommodate the above explanation of R(D(⇤)) anomaly

through W
0 mediator requires extending both the SM gauge group and the field content.

The new gauge group is SU(3)c ⇥ SU(2)L ⇥ SU(2)V ⇥ U(1)0, while the field content is

extended by a right-handed neutrinos ⌫ 0
R
, and by new vector-like quarks and leptons, Q0

L,R

and L
0
L,R

, as well as a new scalar representation HV responsible for the symmetry breaking

to SM. In the remainder of the Section, we give a detailed account of these extensions,

while the related phenomenology is given in Section 4.

Gauge symmetry and the spontaneous symmetry breaking pattern. The

extended gauge group is taken to be G ⌘ SU(3)c ⇥ SU(2)L ⇥ SU(2)V ⇥ U(1)0. At around

TeV scale, this is spontaneously broken down to the SM gauge group, GSM ⌘ SU(3)c ⇥

SU(2)L ⇥ U(1)Y . Our notation for the gauge fields in the G-symmetric phase is G
a
µ, W

i
µ,

W
0j
µ , and B

0
µ, respectively, with gs, gL, gV , and g

0 the corresponding gauge couplings. The

generators in the fundamental representation of SU(3) (SU(2)) group are �a
/2 (�i

/2) with

�
a (�i) the Gell-Mann (Pauli) matrices, where the indices take values a = 1, . . . , 8, and

i, j = 1, 2, 3. We use the phase convention in which the covariant derivative is, for example

for the scalar field HV ⇠ (1,1,2, 1/2), given by Dµ ⌘ @µ � igV W
0j
µ �

j
/2� ig

0
B

0
µ/2.

The gauge group GSM is spontaneously broken in two steps, first G ! GSM and then

GSM ! U(1)em. The first step of spontaneous symmetry breaking, G ! GSM, occurs when

the scalar HV obtains a nonzero vacuum expectation value (vev),

hHV i =
1
p
2

 
0

vV

!
. (3.1)

This results in three Goldstone modes being eaten by the W 0± and Z
0 gauge bosons, giving

W
0±
µ =

1
p
2
(W 01

µ ⌥ iW
02
µ ) , with mass mW 0 =

gV vV

2
,

Z
0
µ = cos ✓V W

03
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0
µ , with mass mZ0 =

mW 0

cos ✓V
,

(3.2)

where tan ✓V = g
0
/gV . In the following, we will use the notation

cV ⌘ cos ✓V , sV ⌘ sin ✓V and tV ⌘ tan ✓V . (3.3)

The HV vev breaks SU(2)V ⇥ U(1)0 ! U(1)Y . The unbroken generator, Y = T
3

V
+ Y

0,

corresponds to the massless SM hypercharge gauge boson, Bµ = sV W
03
µ + cV B

0
µ. Here, T

3

V
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7

of the final state phase space, and the measured missing invariant mass spectrum in the full

B ! D
(⇤)

`⌫̄ decay chain is not disrupted (in the remainder of the paper we denote ⌫ = NR

or ⌫⌧ ). There are five possible UV completions involving such an additional, SM sterile,

state NR [24] (for earlier partial studies see [14, 15] [JZ: more?]). Here, we focus on

the specific case of a W
0-type mediator, which needs only to carry a nonzero hypercharge.

As such, it may obtain its mass from the spontaneous breaking of an exotic non-Abelian

symmetry. In particular, we show that this mediator may be UV completed within the

so-called ‘3221’ gauge model, and examine the relevant flavor, collider and cosmological

constraints. Such a UV completion is minimal in its NP field content and naturally leads

to the largest NP e↵ects in the b ! c⌧ ⌫̄ transitions.

It is instructive to compare the ‘3221’ model, that we introduce below, to the one of

Ref. [12] (see also [? ]) where W
0 is part of an SU(2)L triplet vector with the nearly

degenerate Z
0, as dictated by the Z-pole observables. The gauge invariance also requires

that the flavor structures of W 0 and Z
0 couplings are related through the SM CKM mix-

ing matrix. In the ‘3221’ model, on the other hand, the observable e↵ects of Z 0 can be

suppressed below the present experimental sensitivity, while at the same time one can still

explain the R(D(⇤)) anomaly through the tree level exchange of the W
0.

The paper is structured as follows [JZ: to be finished]

[JZ: Need to cite somewhere [? ]]

2 The EFT analysis

We assume the SM field content is supplemented by a single new state, the right-handed

sterile neutrino transforming as NR ⇠ (1,1)0 under SU(3)c ⇥SU(2)L ⇥U(1)Y . This state

may couple to the SM quarks via any of the four dimension-6 operators

QSR = ✏ab

�
q̄
a

LdR

��
¯̀b
LNR

�
, QSL =

�
ūRq

a

L

��
¯̀a
LNR

�
,

QT = ✏ab

�
q̄
a

L�
µ⌫
dR

��
¯̀b
L�µ⌫NR

�
, QVR =

�
ūR�

µ
dR

��
ēR�µNR

�
, (2.1)

suppressing for now the generational indices. We focus on the operator QVR. This is

generated in a simplified model by a tree level exchange of the W 0
⇠ (1,1)1 mediator, with

the interaction Lagrangian,

LW 0 =
gV
p
2
c
ij

q ū
i

R
/W

0
d
j

R
+

gV
p
2
c
i

N N̄R /W
0
e
i

R + h.c. , (2.2)

with gV and overall coupling constant, while c
ij
q , c

i

N
coe�cients encode the flavor depen-

dence of W 0 interactions. Restoring the flavor structure to QVR, the b ! c`NR decay then

arises from

LVR =
Cij,k

⇤2

e↵

�
ū
i

R�
µ
d
j

R

��
ē
k

R�µNR

�
, Cij,k =

g
2

V
c
ij
q c

k

N
⇤2

e↵

2m2

W 0
, (2.3)

with i, j, k = 1, . . . , 3 the generation indices. Above we have defined an e↵ective scale

⇤e↵ =
�
2
p
2GFVcb

��1/2
' 0.87 (40⇥ 10�3

/Vcb)
1/2TeV , (2.4)
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Field SU(3)c SU(2)L SU(2)V U(1)0

SM-like chiral fermions

q
0i
L

3 2 1 1/6

`
0i
L

1 2 1 -1/2

u
0i
R

3 1 1 2/3

d
0i
R

3 1 1 -1/3

e
0i
R

1 1 1 -1

⌫
0i
R

1 1 1 0

Extra vector-like fermions

Q
0
L,R

3 1 2 1/6

L
0
L,R

1 1 2 -1/2

Scalars

H 1 2 1 1/2

HV 1 1 2 1/2

Table 1. Matter content of the model in the unbroken phase of gauge group G. The flavour index
i = 1, 2, 3. Singlet representation is denoted with 1, while fundamental of SU(3) (SU(2)) is 3 (2).
The last column shows Y 0 quantum number.

The Z
0 mass is arbitrarily increased in the limit of large j, keeping a fixed, while m

0
W

remains unchanged in that limit.

Matter content. The field content of the model is shown in Table 1. There are three

copies of would-be SM chiral fermion fields, q0
L
, `0

L
, u0

R
, d0

R
, e0

R
, and ⌫

0
R
, with the usual

charges under SU(3)c ⇥ SU(2)L ⇥ U(1)0. In addition, we introduce a single generation

of vector-like fermions, Q0
L,R

⇠ (3,1,2, 1/6) and L
0
L,R

⇠ (1,1,2,�1/2), which decompose

under the SM gauge group as

Q
0
L,R =

 
U

0
L,R

D
0
L,R

!
, L

0
L,R =

 
N

0
L,R

E
0
L,R

!
, (3.9)

where U 0
L,R

⇠ (3,1, 2/3), D0
L,R

⇠ (3,1,�1/3), N 0
L,R

⇠ (1,1, 0), and E
0
L,R

⇠ (1,1, 0) under

GSM.

Yukawa sector. The mixing of the SM-like chiral fermions and vector-like fermions

occurs through the following Yukawa interactions in the Lagrangian,

L � L
SM

Yuk
� �

i

d
Q̄

0
LHV d

0i
R � �

i

uQ̄
0
LH̃V u

0i
R

� �
i

eL̄
0
LHV e

0i
R � �

i

⌫L̄
0
LH̃V ⌫

0i
R

�MQQ̄
0
LQ

0
R �MLL̄

0
LL

0
R + h.c. ,

(3.10)

where the Yukawa interactions between the SM fields are, as usual,

L
SM

Yuk
� �q̄

0
LYdHd

0
R � q̄

0
LYuH̃u

0
R

� ¯̀0
LYeHe

0
R � ¯̀0

LY⌫H̃⌫
0
R + h.c. ,

(3.11)
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Matter content
‘3221’ model

FV Z’ couplings uncorrelated!

For quarks, if one is able to expand in vV /MQ, one has [JZ: are we even showing

this?]

c̃
ij

d
/

v
2

V

M
2

Q

�
i

d
�
j

d
, c̃

ij

u /
v
2

V

M
2

Q

�
i

u�
j

u, c
ij

q /
v
2

V

M
2

Q

�
i

u�
j

d
, (4.4)

A hierarchy in �
i

d,u
then translates to a hierarchical structure of the couplings of SM quarks

to Z
0 and W

0 gauge bosons. In the numerical analysis we take vV � MQ ⇠ O, and show

next the resulting scaling for two representative scenarios of the flavor patterns in the

Yukawa couplings, �i

d
,�

i
u, Eq. (3.10).

In flavor-locked 23 model we assume the minimal set of nonzero couplings in order to

explain the b ! c⌧⌫ anomaly. We therefore assume that the new states only couple to cR

and bR in the mass eigenstate basis, so that

�
i

d
⇠ (0, 0, 1), and �

i

u ⇠ (0, 1, 0). (4.5)

We are interested in the limit vV � mQ. For concreteness, we take mQ/vV ⇠ �, and

mQ ⇠ vEW, in which case one obtains for the couplings in (4.1)

c̃
ij

d
⇠

⇣1
2
+ s

2

V

1

6

⌘
0

B@
0 0 0

0 0 0

0 0 1

1

CA+
1

3
s
2

V

0

B@
1 0 0

0 1 0

0 0 �
2

1

CA ,

c̃
ij

u ⇠

⇣1
2
� s

2

V

1

6

⌘
0

B@
0 0 0

0 1 0

0 0 0

1

CA+
2

3
s
2

V

0

B@
1 0 0

0 �
2 0

0 0 1

1

CA , [FL-23],

c
ij

q ⇠

0

B@
0 0 0

0 0 1

0 0 0

1

CA .

(4.6)

Above we assumed that the SM Yukawa structure is aligned for the right-handed fields,

i.e., that no right-handed rotations are needed to diagonalize them. If we instead assume

that the flavor structures comes from a Froggatt-Nielsen model (see below), some of the

entries that become nonzero. They are at most of O(�4), and in most cases actually well

below this size, and can still be safely ignored.

The Froggatt-Nielsen inspired flavor structure. The FN models of flavor explain the hi-

erarchy of quark masses through di↵erent horizontal charges of the SM quarks,H(ui
R
), H(di

R
),

H(q̄i
L
). The SM Yukawa couplings in (3.11) are then parametrically

(Yd)ij ⇠ �
|H(q̄

i
)+H(d

j
R)|

, (Yu)ij ⇠ �
|H(q̄

i
)+H(u

j
R)|

, (4.7)

with � ' sin ✓C = 0.23, where ✓C is the Cabibbo mixing angle, and we do not display

unknown O(1) prefactors. We use the following assignment of horizontal charges [32],

H({q̄1L, q̄
2

L, q̄
3

L;u
1

R, u
2

R, u
3

R; d
1

R, d
2

R, d
3

R}) = {3, 2, 0; 3, 1, 0; 2, 1, 1}. (4.8)

which leads to a phenomenologically satisfactory pattern of quark masses and CKM mixing

angles in the moderate tan� ' 1/� limit of a two Higgs doublet model. The Yukawa
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ij
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‘3221’ model

Direct searches at the 
LHC are marching in
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R(D(*))
1σ
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LHC exclusions: FL-23, 2 VL families

Figure 3. The LHC exclusion limits on the Z 0 andW
0 resonances from ATLAS ⌧

+
⌧
� [48], `+`� [49]

(` = e, µ), and ⌧⌫ [50] searches, respectively, projected on the (vV , gV ) plane for the FL-23 scenario
assuming the maximal fermion mixing angles s✓b , s✓c , s✓e and s✓N (that is c

23
q , c

3
N ! 1). The

vertical green band represents 1� range for R(D(⇤)) anomaly. Dashed blue (red) isolines are the
predicted masses for Z 0 (W 0) gauge bosons. The plot on the left is for the minimal matter content,
while the plot on the right assumes an additional family of the vector-like fermions mixing weakly
with the SM fermions. Their masses are set to 0.8 TeV, above the limits from [52].

⌧
+
⌧
� [48] and `

+
`
� [49] (` = e, µ) searches gives the exclusion regions in the (vV , gV )

plane shown in Fig. 3 for ⌧
+
⌧
� (brown) and `

+
`
� (gray), respectively. The parameter

space consistent with the LHC data has gV � g
0, or tV ⌧ 1. This is required to suppress

Z
0 couplings to valence quarks and light charged leptons. In this regime, the dominant

decay modes are to bb̄, cc̄, ⌧+⌧� and NRNR, and the main production mechanism is from

the charm fusion. Comparing instead the �(pp ! W
0) ⇥ B(W 0

! ⌧⌫) to the upper limits

from the ATLAS analysis [50] (see also [51]), leads to constraints shown with light blue.

Introducing another vector-like fermion family helps reduce these constraints as shown in

the right plot. Here we set the masses of vector-like fermion to 0.8 TeV, which is above the

limits from the quark partner pair production [52]. We also checked that in the interesting

region of parameter space the W
0
, Z

0 induced production is always subleading compared

to the QCD pair production.

4.2 Flavor constraints

We next turn our attention to the flavor constraints. In FL-23 model all the tree-level

FCNCs are strongly suppressed, and are phenomenologically negligible. The one-loop

induced FCNCs are also negligible, suppressed by both mW 0 � mW and the extreme

smallness of the flavor-changing couplings cijq , for ij 6= 23.

Other flavor models, beside flavor-locking, may lead to a flavor structure similar to

– 14 –

  [AG, Robinson, Shakya, Zupan] 
1804.04642



 21

e

La fin



 22

Backup slides



 23 13

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

Corrections to W decays
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n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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Operator Fierz identity Allowed Current �Lint

OVL (c̄�µPLb) (⌧̄ �
µPL⌫) (1,3)0 (gq q̄L⌧�

µqL + g` ¯̀L⌧�
µ`L)W

0
µ

OVR (c̄�µPRb) (⌧̄ �
µPL⌫)

OSR (c̄PRb) (⌧̄PL⌫)

OSL (c̄PLb) (⌧̄PL⌫)

�
(1,2)1/2 (�dq̄LdR�+ �uq̄LuRi⌧2�

† + �`
¯̀
LeR�)

OT (c̄�µ⌫PLb) (⌧̄�µ⌫PL⌫)

O
0
VL

(⌧̄ �µPLb) (c̄�
µPL⌫)  ! OVL

⌧
(3,3)2/3 � q̄L⌧�µ`LU

µ

O
0
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(⌧̄ �µPRb) (c̄�
µPL⌫)  ! �2OSR

�
(3,1)2/3 (� q̄L�µ`L + �̃ d̄R�µeR)U

µ

O
0
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(⌧̄PRb) (c̄PL⌫)  ! �
1
2OVR

O
0
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(⌧̄PLb) (c̄PL⌫)  ! �
1
2OSL �

1
8OT (3,2)7/6 (� ūR`L + �̃ q̄Li⌧2eR)R
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TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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Operator Fierz identity Allowed Current �Lint

OVL (c̄�µPLb) (⌧̄ �
µPL⌫) (1,3)0 (gq q̄L⌧�

µqL + g` ¯̀L⌧�
µ`L)W

0
µ

OVR (c̄�µPRb) (⌧̄ �
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�
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O
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µ
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TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.
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• List of all relevant operators:

LFUV in B → D (*) τ ν

SM EFT

Λ > v
SU(3)xSU(2)LxU(1)

Linear EWSB
Dim-6 operators

Other tree-level contributions
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.

JID:PLB AID:32415 /SCO Doctopic: Phenomenology [m5Gv1.3; v1.190; Prn:11/11/2016; 9:25] P.2 (1-9)

2 D.A. Faroughy et al. / Physics Letters B ••• (••••) •••–•••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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Operator Fierz identity Allowed Current �Lint

OVL (c̄�µPLb) (⌧̄ �
µPL⌫) (1,3)0 (gq q̄L⌧�

µqL + g` ¯̀L⌧�
µ`L)W

0
µ

OVR (c̄�µPRb) (⌧̄ �
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�
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O
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TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼|V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼|V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡(pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡(pb − pτ )2- or u ≡(pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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ReR)S

O
00
T (⌧̄�µ⌫PLc

c) (b̄c�µ⌫PL⌫)  ! �6OSL �
1
2OT

TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓ ↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓ ↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values
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which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m2

`
/q2)

has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�qµhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,
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For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values

• List of all relevant operators:
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1.10 Ṽ2 = (3,2,�1/6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1.11 Ũ1 = (3,1, 5/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.12 U1 = (3,1, 2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Coherent picture of B-anomalies
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Common origin?

the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

Le↵ = LSM �
1

v2
�q

ij
�`

↵�

h
CT (Q̄i

L�µ�
aQj

L
)(L̄↵

L�
µ�aL�

L
) + CS (Q̄i

L�µQ
j

L
)(L̄↵

L�
µL�

L
)
i
, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q

ij
, �`

↵�
and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td
, V ⇤

ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤

⌧µ) with |V⌧µ| ⌧ 1. We adopt as
reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi

L =

✓
V ⇤
ji
uj
L

di
L

◆
, L↵

L =

✓
⌫↵
L

`↵
L

◆
. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:

5
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the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale
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where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q

ij
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↵�
and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td
, V ⇤

ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤

⌧µ) with |V⌧µ| ⌧ 1. We adopt as
reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is
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A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:
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Observable Experimental bound Linearised expression

R⌧`

D(⇤) 1.237± 0.053 1 + 2CT (1� �q

sb
V ⇤
tb
/V ⇤

ts)(1� �`
µµ/2)

�Cµ

9 = ��Cµ

10
�0.61± 0.12 [36] �

⇡

↵emVtbV
⇤
ts
�`
µµ�

q

sb
(CT + CS)

Rµe

b!c
� 1 0.00± 0.02 2CT (1� �q

sb
V ⇤
tb
/V ⇤

ts)�
`
µµ

B
K(⇤)⌫⌫̄

0.0± 2.6 1 + 2
3

⇡

↵emVtbV
⇤
tsC

SM
⌫

(CT � CS)�
q

sb
(1 + �`

µµ)

�gZ⌧L
�0.0002± 0.0006 0.033CT � 0.043CS

�gZ⌫⌧ �0.0040± 0.0021 �0.033CT � 0.043CS

|gW⌧ /gW
`
| 1.00097± 0.00098 1� 0.084CT

B(⌧ ! 3µ) (0.0± 0.6)⇥ 10�8 2.5⇥ 10�4(CS � CT )2(�`
⌧µ)

2

Table 1: Observables entering in the fit, together with the associated experimental bounds
(assuming the uncertainties follow the Gaussian distribution) and their linearised expressions in
terms of the EFT parameters. The full expressions used in the fit can be found in Appendix B.

1. The factorised flavour structure in Eq. (1) is not the most general one; however, it is general
enough given that the available data are sensitive only to the flavour-breaking couplings
�q

sb
and �`

µµ (and, to a minor extent, also to �`
⌧µ). By construction, �q

bb
= �`

⌧⌧ = 1.

2. The choice of basis in Eq. (2) to define the U(2)q ⇥U(2)` singlets (i.e. to define the “third
generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects itself in the
values of �q

sb
, �`

µµ, and �`
⌧µ, that, in absence of a specific basis alignment, are expected to

be
�q

sb
= O(|Vcb|) , �`

⌧µ = O(|V⌧µ|) , �`

µµ = O(|V⌧µ|
2) . (3)

3. A particularly restrictive scenario, that can be implemented both in the case of LQ or
colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that there
exists a flavour basis where the NP interaction is completely aligned along the flavour
singlets. For both mediators, in this specific limit one arrives to the prediction �`

µµ > 0.

In order to reduce the number of free parameters, in Eq. (1) we assume the same flavour
structure for the two operators. This condition is realised in specific simplified models, but it
does not hold in general. The consequences of relaxing this assumption are discussed in Section 3
in the context of specific examples. Finally, motivated by the absence of deviations from the SM
in CP-violating observables, we assume all the complex phases, except the CKM phase contained
in the Vq spurion, to vanish (as shown in Appendix A, this implies �q

bs
= �q

sb
and �`

⌧µ = �`
µ⌧ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies, we
perform a fit to low-energy data with four free parameters: CT , CS , �

q

sb
, and �`

µµ, while for

simplicity we set �`
⌧µ = 0.1 The set of experimental measurements entering the fit, together

1We explicitly verified that a nonzero �⌧µ has no impact on the fit results.
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colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that there
exists a flavour basis where the NP interaction is completely aligned along the flavour
singlets. For both mediators, in this specific limit one arrives to the prediction �`

µµ > 0.

In order to reduce the number of free parameters, in Eq. (1) we assume the same flavour
structure for the two operators. This condition is realised in specific simplified models, but it
does not hold in general. The consequences of relaxing this assumption are discussed in Section 3
in the context of specific examples. Finally, motivated by the absence of deviations from the SM
in CP-violating observables, we assume all the complex phases, except the CKM phase contained
in the Vq spurion, to vanish (as shown in Appendix A, this implies �q
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2.2 Fit of the semi-leptonic operators
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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Flavour basis:

Fit parameters:

Observable Experimental bound Linearised expression

R⌧`

D(⇤) 1.237± 0.053 1 + 2CT (1� �q

sb
V ⇤
tb
/V ⇤

ts)(1� �`
µµ/2)

�Cµ

9 = ��Cµ

10
�0.61± 0.12 [36] �

⇡

↵emVtbV
⇤
ts
�`
µµ�

q

sb
(CT + CS)

Rµe

b!c
� 1 0.00± 0.02 2CT (1� �q

sb
V ⇤
tb
/V ⇤

ts)�
`
µµ

B
K(⇤)⌫⌫̄

0.0± 2.6 1 + 2
3

⇡

↵emVtbV
⇤
tsC

SM
⌫

(CT � CS)�
q

sb
(1 + �`

µµ)

�gZ⌧L
�0.0002± 0.0006 0.033CT � 0.043CS

�gZ⌫⌧ �0.0040± 0.0021 �0.033CT � 0.043CS

|gW⌧ /gW
`
| 1.00097± 0.00098 1� 0.084CT

B(⌧ ! 3µ) (0.0± 0.6)⇥ 10�8 2.5⇥ 10�4(CS � CT )2(�`
⌧µ)

2

Table 1: Observables entering in the fit, together with the associated experimental bounds
(assuming the uncertainties follow the Gaussian distribution) and their linearised expressions in
terms of the EFT parameters. The full expressions used in the fit can be found in Appendix B.

1. The factorised flavour structure in Eq. (1) is not the most general one; however, it is general
enough given that the available data are sensitive only to the flavour-breaking couplings
�q

sb
and �`

µµ (and, to a minor extent, also to �`
⌧µ). By construction, �q

bb
= �`

⌧⌧ = 1.

2. The choice of basis in Eq. (2) to define the U(2)q ⇥U(2)` singlets (i.e. to define the “third
generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects itself in the
values of �q

sb
, �`

µµ, and �`
⌧µ, that, in absence of a specific basis alignment, are expected to

be
�q

sb
= O(|Vcb|) , �`

⌧µ = O(|V⌧µ|) , �`

µµ = O(|V⌧µ|
2) . (3)

3. A particularly restrictive scenario, that can be implemented both in the case of LQ or
colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that there
exists a flavour basis where the NP interaction is completely aligned along the flavour
singlets. For both mediators, in this specific limit one arrives to the prediction �`

µµ > 0.

In order to reduce the number of free parameters, in Eq. (1) we assume the same flavour
structure for the two operators. This condition is realised in specific simplified models, but it
does not hold in general. The consequences of relaxing this assumption are discussed in Section 3
in the context of specific examples. Finally, motivated by the absence of deviations from the SM
in CP-violating observables, we assume all the complex phases, except the CKM phase contained
in the Vq spurion, to vanish (as shown in Appendix A, this implies �q

bs
= �q

sb
and �`

⌧µ = �`
µ⌧ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies, we
perform a fit to low-energy data with four free parameters: CT , CS , �

q

sb
, and �`

µµ, while for

simplicity we set �`
⌧µ = 0.1 The set of experimental measurements entering the fit, together

1We explicitly verified that a nonzero �⌧µ has no impact on the fit results.
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Figure 3: The lines show the correlations among triplet and singlet operators in single-mediator models.
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compensate for the radiative constraints (see Figure 1 bottom-right). In other words, in the
small �q

sb
scenario the tuning problem is moved from the �F = 2 sector to that of electroweak

observables. We will present an explicit realisation of the small �q

sb
scenario in Section 3.3.

3 Simplified models

In this section we analyse how the general results discussed in the previous section can be
implemented, and eventually modified adding extra ingredients, in three specific (simplified)
UV scenarios with explicit mediators.

The complete set of single-mediator models with tree-level matching to the vector triplet
and/or singlet V � A operators consists of: colour-singlet vectors B0

µ ⇠ (1,1, 0) and W 0
µ ⇠

(1,3, 0), colour-triplet scalars S1 ⇠ (3̄,3, 1/3) and S3 ⇠ (3̄,3, 1/3), and coloured vectors Uµ

1 ⇠

(3,1, 2/3) and Uµ

3 ⇠ (3,3, 2/3) [46]. The quantum numbers in brackets indicate colour, weak,
and hypercharge representations, respectively. In Figure 3 we show the correlation between
triplet and singlet operators predicted in all single-mediator models, compared to the regions
favoured by the EFT fit.

The plot in Figure 3 clearly singles out the case of a vector LQ, Uµ

1 , which we closely
examine in the next subsection, as the best single-mediator case. However, it must be stressed
that there is no fundamental reason to expect the low-energy anomalies to be saturated by the
contribution of a single tree-level mediator. In fact, in many UV completions incorporating one of
these mediators (for example in composite Higgs models, see Section 4), these states often arise
with partners of similar mass but di↵erent electroweak representation, and it is thus natural
to consider two or more of them at the same time. For this reason, and also for illustrative
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to consider two or more of them at the same time. For this reason, and also for illustrative

11

Figure 3: The lines show the correlations among triplet and singlet operators in single-mediator models.
Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in red. Electroweak
singlet mediators are shown with the solid lines while triplets with dashed.

compensate for the radiative constraints (see Figure 1 bottom-right). In other words, in the
small �q

sb
scenario the tuning problem is moved from the �F = 2 sector to that of electroweak

observables. We will present an explicit realisation of the small �q

sb
scenario in Section 3.3.

3 Simplified models

In this section we analyse how the general results discussed in the previous section can be
implemented, and eventually modified adding extra ingredients, in three specific (simplified)
UV scenarios with explicit mediators.

The complete set of single-mediator models with tree-level matching to the vector triplet
and/or singlet V � A operators consists of: colour-singlet vectors B0

µ ⇠ (1,1, 0) and W 0
µ ⇠

(1,3, 0), colour-triplet scalars S1 ⇠ (3̄,1, 1/3) and S3 ⇠ (3̄,3, 1/3), and coloured vectors Uµ

1 ⇠

(3,1, 2/3) and Uµ

3 ⇠ (3,3, 2/3) [46]. The quantum numbers in brackets indicate colour, weak,
and hypercharge representations, respectively. In Figure 3 we show the correlation between
triplet and singlet operators predicted in all single-mediator models, compared to the regions
favoured by the EFT fit.

The plot in Figure 3 clearly singles out the case of a vector LQ, Uµ

1 , which we closely
examine in the next subsection, as the best single-mediator case. However, it must be stressed
that there is no fundamental reason to expect the low-energy anomalies to be saturated by the
contribution of a single tree-level mediator. In fact, in many UV completions incorporating one of
these mediators (for example in composite Higgs models, see Section 4), these states often arise
with partners of similar mass but di↵erent electroweak representation, and it is thus natural
to consider two or more of them at the same time. For this reason, and also for illustrative

11

  [Buttazzo, AG, Isidori, Marzocca], 
JHEP 1711 (2017) 044

Single-mediator models



 28

Vector LQ

EW

NP

Energy scale UV example: Single-mediator model

19

Vector LQ

EW

NP

Energy scale

  [Buttazzo, AG, Isidori, Marzocca], 
JHEP 1711 (2017) 044

un
co

rr
ec

te
d 

pr
oo

f

_####_ Page 2 of 9 Eur. Phys. J. C  _#####################_

scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)

– 10 –

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

de + uν
*Expanding SU(2)

Matching

• Global fit to low-energy data (RGE effects included)

  [Buttazzo, AG, Isidori, Marzocca] 
JHEP 1711 (2017) 044
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.

un
co

rr
ec

te
d 

pr
oo

f

_####_ Page 2 of 9 Eur. Phys. J. C  _#####################_

scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Flavour basis:

UV example: Single-mediator model

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

J
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P
1
1
(
2
0
1
7
)
0
4
4

Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)

– 10 –

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

de + uν
*Expanding SU(2)

Matching

• Global fit to low-energy data (RGE effects included)

matching
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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UV example: Single-mediator model

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)

– 10 –

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

de + uν
*Expanding SU(2)
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• Global fit to low-energy data (RGE effects included)
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧

+
⌧
� process.

lowing we thus restrict our analysis to mediator masses
above ⇠ 200 GeV.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [25]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W
0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧

+
⌧
�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧
+
⌧
� production, this time through t̂ ⌘ (pb � p⌧�)2- or

û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do

not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W

0a
⇠ W

0±
, Z

0 can be coupled to the SM fermions via

LW 0 = �
1

4
W

0aµ⌫
W

0a
µ⌫

+
M

2
W 0

2
W

0aµ
W

0a
µ

+ W
0a
µ
J
aµ

W 0 ,

J
aµ

W 0 ⌘ �
q

ij
Q̄i�

µ
�
a
Qj + �

`

ij
L̄i�

µ
�
a
Lj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij

' g
b(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [18]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [18].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D

0 mixing yielding gb/MW 0 < 2.2 TeV�1 [29]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W
0 and

Z
0 components of W 0a to be degenerate up to O(%) [30],

with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [31] can be used to constrain the Z

0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
a
H

†
�
a

$
Dµ H) needs to be

suppressed [18], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W
0a at tree level, generates the

four-fermion operator,

L
e↵
W 0 = �

1

2M2
W 0

J
aµ

W 0J
aµ

W 0 , (5)

2
Also, Ref. [28] considers leading RGE e↵ects to correlate large

NP contributions in cQQLL with observable LFU violations and

FCNCs in the charged lepton sector. The resulting bounds can

be (partially) relaxed in this model via direct tree level W
0
con-

tributions to the purely leptonic observables.
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)

– 10 –

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],
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where a smaller value for CT can be compensated by a larger one for λq
sb. The

preferred values of λq
sb are still consistent with the general expectation in eq. (2.3).

As we discuss below, the substantial increase in the effective NP scale is also beneficial

in improving the agreement with the high-pT searches pointed out in [33].

2. The upper bound on B(B → K∗νν̄), as well as radiative constraints, strongly favour

equal magnitudes of triplet and singlet operators (CT ∼ CS). Nevertheless, at the 1σ

level this relation has to be satisfied only at the 30% level, and therefore requires no

fine tuning.

3. The flavour symmetry plays a non-trivial role in avoiding significant constraints on

the value of λq
sb from b → u transitions, in particular from B(B → τν), enforcing the

relation Rτℓ
b→u = Rτℓ

D(∗) (see appendix B).

4. The measured value of ∆Cµ
9 = −∆Cµ

10, together with the size of λq
sb and CT,S from

points 1 and 2, requires a value of λℓ
µµ ≈ O(10−2), perfectly consistent with the

hypothesis of a small breaking of the U(2)ℓ flavour symmetry. The measured values

of Rµe
K(∗) fix also the relative sign of λℓ

µµ and λℓ
ττ which must be opposite, strongly

disfavouring the pure mixing hypothesis.

5. We do not include λℓ
τµ in the fit, but we point out that values of |λℓ

τµ| ∼ |λℓ
µµ|1/2 ∼ 0.1

are perfectly compatible with the limits from LFV in τ decays, even after taking into

account radiatively-induced effects [35]. We nevertheless list the related observable

in table 1 since it is relevant for some of the simplified models, such as the scalar

leptoquark, where λℓ
τµ cannot be set to zero.

The best-fit region is consistent with both Rµe
K(∗) and Rτℓ

D(∗) anomalies. To illustrate

this fact, in figure 2 we show the values of the two observables for a randomly chosen set
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τµ cannot be set to zero.

The best-fit region is consistent with both Rµe
K(∗) and Rτℓ

D(∗) anomalies. To illustrate

this fact, in figure 2 we show the values of the two observables for a randomly chosen set

– 6 –

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

Observable Experimental bound Linearised expression

Rτℓ
D(∗) 1.237± 0.053 1 + 2CT (1− λq

sbV
∗
tb/V

∗
ts)(1− λℓ

µµ/2)

∆Cµ
9 = −∆Cµ

10
−0.61± 0.12 [36] − π

αemVtbV ∗
ts
λℓ
µµλ

q
sb(CT + CS)

Rµe
b→c − 1 0.00± 0.02 2CT (1− λq

sbV
∗
tb/V

∗
ts)λ

ℓ
µµ

BK(∗)νν̄
0.0± 2.6 1 + 2

3
π

αemVtbV ∗
tsC

SM
ν

(CT − CS)λ
q
sb(1 + λℓ

µµ)

δgZτL
−0.0002± 0.0006 0.033CT − 0.043CS

δgZντ −0.0040± 0.0021 −0.033CT − 0.043CS

|gWτ /gWℓ | 1.00097± 0.00098 1− 0.084CT

B(τ → 3µ) (0.0± 0.6)× 10−8 2.5× 10−4(CS − CT )2(λℓ
τµ)

2

Table 1. Observables entering in the fit, together with the associated experimental bounds (as-
suming the uncertainties follow the Gaussian distribution) and their linearised expressions in terms
of the EFT parameters. The full expressions used in the fit can be found in appendix B.

where a smaller value for CT can be compensated by a larger one for λq
sb. The

preferred values of λq
sb are still consistent with the general expectation in eq. (2.3).

As we discuss below, the substantial increase in the effective NP scale is also beneficial

in improving the agreement with the high-pT searches pointed out in [33].

2. The upper bound on B(B → K∗νν̄), as well as radiative constraints, strongly favour

equal magnitudes of triplet and singlet operators (CT ∼ CS). Nevertheless, at the 1σ

level this relation has to be satisfied only at the 30% level, and therefore requires no

fine tuning.

3. The flavour symmetry plays a non-trivial role in avoiding significant constraints on

the value of λq
sb from b → u transitions, in particular from B(B → τν), enforcing the

relation Rτℓ
b→u = Rτℓ

D(∗) (see appendix B).

4. The measured value of ∆Cµ
9 = −∆Cµ

10, together with the size of λq
sb and CT,S from
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K(∗) fix also the relative sign of λℓ
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ττ which must be opposite, strongly

disfavouring the pure mixing hypothesis.

5. We do not include λℓ
τµ in the fit, but we point out that values of |λℓ

τµ| ∼ |λℓ
µµ|1/2 ∼ 0.1

are perfectly compatible with the limits from LFV in τ decays, even after taking into

account radiatively-induced effects [35]. We nevertheless list the related observable

in table 1 since it is relevant for some of the simplified models, such as the scalar

leptoquark, where λℓ
τµ cannot be set to zero.

The best-fit region is consistent with both Rµe
K(∗) and Rτℓ

D(∗) anomalies. To illustrate
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Figure 5: Present and future-projected LHC constraints on the vector leptoquark model of Section 3.1.
The 1� and 2� preferred regions from the low-energy fit are shown in green and yellow, respectively.

not least, this LQ representation does not allow baryon number violating operators of dimension
four. These features, and the absence of a tree-level contribution to Bs(d) meson-antimeson
mixing, makes this UV realisation, originally proposed in [17], particularly appealing: the best
fit points of the general fit in Section 2.2 can be recovered essentially without tuning of the
model parameters.

In Figure 4 we show the results of the flavour fit in this parametrisation (using the �i↵
rather than the �q(`)

ij(↵�) as free parameters). When marginalising we let �s⌧ and �sµ vary between

±5|Vcb| and impose |�bµ| < 0.5. We find very similar conclusions to the previous fit, in particular
a reduced value of CU thanks to the extra contribution to R⌧`

D(⇤) proportional to �s⌧ , with both
this parameter and �sµ of O(|Vcb|).

Despite being absent at the tree level, a contribution to �F = 2 amplitudes is generated in
this model at the one-loop level. The result thus obtained is quadratically divergent and therefore
strongly dependent on the UV completion. Following the analysis of Ref. [17], i.e. setting a hard
cut-o↵ ⇤ on the quadratically divergent �F = 2 (down-type) amplitudes, leads to

�L(�B=2) = C(U)
0

(V ⇤
tb
Vti)2

32⇡2v2
�
b̄L�µd

i

L

�2
, C(U)

0 = C2
U

✓
�q

bs

Vts

◆2
⇤2

2v2
. (10)

As already pointed out in Section 2.3, the value of C(U)
0 should not exceed O(10%) given the

experimental constraints on �MBs,d (for comparison, C(SM)
0 = (4⇡↵/s2

W
)S0(xt) ⇡ 1.0, see Ap-

pendix B). This can be achieved only for ⇤ ⇠ few TeV – i.e. ⇤ not far from MU , as expected in a
strongly interacting regime (unless some specific cancellation mechanism of �F = 2 amplitudes
is present in the UV). Interestingly enough, for fixed ⇤, the large value of �q

bs
does not increase
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Figure 17: Feynman diagrams relevant for a pair production of scalar LQs at hadron colliders.
Representative diagram for a gluon-gluon fusion (quark-antiquark annihilation) process is
shown in the upper left (right) panel. The diagram in the lower panel represents a t-channel
production mechanism. Here, yij , i, j = 1, 2, 3, represents appropriate Yukawa coupling of a
quark (qi) and a lepton (lj) with an LQ.
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)
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U
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B(U ! t⌫) = B(U ! b⌧) = 0.5. Revisiting the AT-
LAS search [32] for QCD pair-produced third generation
scalar leptoquark in the tt̄⌫⌫̄ channel, Ref. [20], excludes
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The fit to R(D(⇤)) anomaly requires |gU |
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+
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vector LQ exchange. A recast of existing ⌧
+
⌧
� searches

in this model is presented in the Section IVB 4.

D. Scalar Leptoquark

Finally, we analyze a model recently proposed in
Ref. [34], in which the SM is supplemented by a scalar
leptoquark weak doublet, � ⌘ (3,2, 1/6) and a fermionic
SM singlet (⌫R),4 with the following Yukawa interactions,
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The mass of the fermionic singlet is assumed to be be-
low the experimental resolution of the semi-tauonic B

decay measurements, such that the excess of events is ex-
plained via the LQ mediated contribution with ⌫R in the
final state. Following Ref. [34], the R(D(⇤)) anomaly can
be accommodated provided the model parameters (eval-
uated at mass scale of the leptoquark µR ⇠ 0.5 � 1 TeV)
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= 1.2 ± 0.3, (14)

(see Fig. [1] in [34]) where gw ' 0.65 and MW ' 80 GeV
are the SM weak gauge coupling and W boson mass,
respectively. Considering an exhaustive set of flavor con-
straints, Ref. [34] finds that Y
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L
, Y

sµ

L
and Y

s⌫

R
are in

4
The case of several ⌫R is a trivial generalization which does not

a↵ect our main results.

general constrained to be small, and we therefore do not
consider them in our subsequent analysis.
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.

III. GAUGE LEPTOQUARK MODEL

Let us consider the gauge group G ⌘ SU(4) ⇥
SU(3)0 ⇥ SU(2)L ⇥ U(1)0, and denote respectively
by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1

the gauge couplings and T
↵
, T

a
, T

i
, Y

0 the gener-
ators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8,
i = 1, 2, 3. The normalization of the genera-
tors in the fundamental representation is fixed by
TrT↵

T
� = 1

2�
↵� , etc. The color and hyper-

charge factors of the SM gauge group GSM ⌘

SU(3)c ⇥ SU(2)L ⇥ U(1)Y are embedded in the
following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag
and U(1)Y = (U(1)4 ⇥ U(1)0)diag, where SU(3)4 ⇥

U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15 + Y
0,

with T
15 = 1

2
p
6
diag(1, 1, 1,�3).

The spontaneous breaking G ! GSM happens via
the scalar representations ⌦3 =

�
4, 3, 1, 1/6

�
and

⌦1 =
�
4, 1, 1,�1/2

�
, which can be represented re-

spectively as a 4 ⇥ 3 matrix and a 4-vector trans-

2 The resolution of both the RD(⇤) and RK(⇤) anomalies via
a PS leptoquark Uµ was recently put forth in Ref. [46]. In
this respect, we reach a di↵erent conclusion.

forming as ⌦3 ! U
⇤
4⌦3U

T
30 and ⌦1 ! U

⇤
4⌦1 under

SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [52]
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CCA , (1)

ensuring the proper G ! GSM breaking. Un-
der GSM the scalar representations decompose as
⌦3 = (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦1 =
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2
v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z

0 =
(1, 1, 0) under GSM. From the scalar kinetic terms
one obtains [51, 52]
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Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM

prior to electroweak symmetry breaking
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The matching with the SM gauge couplings reads

gs =
g4g3p
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, gY =
g4g1q
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3g
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, (6)

where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
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SM color and hypercharge are embedded into a
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in [48–50]. For N = 1 one can basically obtain a
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fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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ensuring the proper G ! GSM breaking. Un-
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combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
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glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p
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v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
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(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p
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v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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However, a serious obstacle of such setup is the si-
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proportional to the corresponding lepton mass.
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in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.
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as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
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and g1 = 0.365.
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group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
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2

However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
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transforming non-trivially under SU(4)0 ⇥ SU(2)L,
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
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sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.
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multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
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in [48–50]. For N = 1 one can basically obtain a
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fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.
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acquiring a vev hHi = 1p

2
v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z

0 =
(1, 1, 0) under GSM. From the scalar kinetic terms
one obtains [51, 52]
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Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM

prior to electroweak symmetry breaking
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The matching with the SM gauge couplings reads
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
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the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,
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However, a serious obstacle of such setup is the si-
multaneous presence of both left- and right-handed
currents breaking lepton chirality, without being
proportional to the corresponding lepton mass.
Hence, the bounds from various LFV and FCNC
processes push the mass of the leptoquark in the
100 TeV ballpark [43–45]. Allowing for a mixed em-
bedding of the SM matter fields could help in sup-
pressing right-handed currents in the down sector
(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z

0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions 2.
A crucial ingredient to circumvent the previous

issues was recently proposed in Ref. [47] in the con-
text of a “partial unification” model in which the
SM color and hypercharge are embedded into a
SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group. The latter re-
sembles the embedding of color as the diagonal sub-
group of two SU(3) factors, as originally proposed
in [48–50]. For N = 1 one can basically obtain a
massive leptoquark which does not couple to SM
fermions, if the latter are SU(3 + N) singlets. A
coupling of Uµ to left-handed SM fermions can be
generated via the mixing with a vector-like fermion
transforming non-trivially under SU(4)0 ⇥ SU(2)L,
as recently suggested in Appendix C of Ref. [51].
The latter model example, formulated in the context
of leptoquark LHC phenomenology, is the starting
point of our construction. We go a step beyond and
implement the necessary flavour structure to fit the
B-anomalies, while keeping the model phenomeno-
logically viable.

III. GAUGE LEPTOQUARK MODEL

Let us consider the gauge group G ⌘ SU(4) ⇥
SU(3)0 ⇥ SU(2)L ⇥ U(1)0, and denote respectively
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the gauge couplings and T
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ators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8,
i = 1, 2, 3. The normalization of the genera-
tors in the fundamental representation is fixed by
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charge factors of the SM gauge group GSM ⌘

SU(3)c ⇥ SU(2)L ⇥ U(1)Y are embedded in the
following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag
and U(1)Y = (U(1)4 ⇥ U(1)0)diag, where SU(3)4 ⇥

U(1)4 ⇢ SU(4). In particular, Y =
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with T
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diag(1, 1, 1,�3).

The spontaneous breaking G ! GSM happens via
the scalar representations ⌦3 =

�
4, 3, 1, 1/6

�
and

⌦1 =
�
4, 1, 1,�1/2

�
, which can be represented re-

spectively as a 4 ⇥ 3 matrix and a 4-vector trans-

2 The resolution of both the RD(⇤) and RK(⇤) anomalies via
a PS leptoquark Uµ was recently put forth in Ref. [46]. In
this respect, we reach a di↵erent conclusion.

forming as ⌦3 ! U
⇤
4⌦3U

T
30 and ⌦1 ! U

⇤
4⌦1 under

SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [52]
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ensuring the proper G ! GSM breaking. Un-
der GSM the scalar representations decompose as
⌦3 = (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦1 =
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real
color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of GSM is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2
v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to G/GSM and trans-
forming as U = (3, 1, 2/3), g0 = (8, 1, 0) and Z

0 =
(1, 1, 0) under GSM. From the scalar kinetic terms
one obtains [51, 52]
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Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of GSM

prior to electroweak symmetry breaking
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The matching with the SM gauge couplings reads

gs =
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g3,4 > gs and g4,1 > gY , one has
g4,3 � g1. A typical benchmark is g4 = 3, g3 = 1.08
and g1 = 0.365.

The would-be SM fermion fields (when neglecting
the mixing discussed below), are charged under the
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