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The framework: b — st/ effective Hamiltonian, Wilson Coefficients

0+

. b— sy(*) : HAF g o< D VisVaCiOi+ ...

separate short and long distances (u, = my)

(B}% WJ‘D ® Or = gz (50""Prb) F,,  [real or soft photon]
("] Og = lé?(gﬁ/,uPLb) (E'yuf)

f ; ® Oy = 125(57,Prb) ((4"y50)
5/\/ ODIU) 10" /
()% M) ()% M) cM =029, 05V =41, ) = —4.3

NP changes short-distance ¢; = ¢ + CN' for SM or involve additional operators O;

@ Chirally flipped (W — Wg) Oy o (50" P b)F,,, Og o< (57, Prb)(€y"0) ...
@ (Pseudo)scalar (W — H™) Og o (5Prb)(£0), Op < (5Pgrb)(ysl)
@ Tensor operators (y — T) Or 50, (1 — v5)b Loy, L
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The Anomalies
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P..... acloser look to the most tested anomaly (Type-I)

Is this an statistical fluctuation?

S P! was proposed in DMRV, JHEP 1301(2013)048
o LHCbdata o ATLAS data
= Belledata © CMS data

1 L ALx AR pARx*
[ SM from DHMV -] Pl — /9 Re(Ag AT AgAT) =P (1+ O(asé)) +p-c.) .

7 1 5
o™ ] VIAoP(ALP + 4

AL Optimized Obs.: Soft form factor (£, ) cancellation at LO.
| _% @[@% @ 2013: 1fb~! dataset LHCb found 3.70.

WY,
L -

T I @ 2015: 3fb~! dataset LHCb (black) found 34 in 2 bins.
I T T S— = Predictions ( ) from DHMV.
iy s Gl (¢ 2\ ) @ Belle (red) confirmed it in a bin [4,8] few months ago.

* PRL 118 (2017) CMS-PAS-BPH-15-008

Is there a problem with hadronic uncertainties?: Two robust and independent analysis (same as Fp):

@ ORANGE DHMV: using i-QCDF and KMPW FF+ 4 types of corrections.
@ MAGENTA ASZB: using full FF from BSZ.

.... are in nice agreement and finds the anomaly.
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Other b — su*u~ observables tensions show up: (Coherence I)

Systematic deficit of muons at large-recoil but also at low-recoil:

BWLCSR Lattice -e-Data
T T T

— . - EmI.CSR Lattice -e-Data
S s B+_)K+u+/[—; c’FZO""""""""';""-
S ‘ LHCb > B'> K 'uty ]
< ] QO 1sf LHCb -
°Q>< S r ]
S At Tt x f
=, ++ w 10F ~ .
3 = | t 5
E 1 1 Q 5 ]
<= 9 5 10 15 20 -g L i
@ [GeV¥c4] ] f \ T = T
— WSLCSR _Lattice --Data — = 9 5 10 15 20
> B’ Kouty 7 ¢ [GeV?/c4]
g LHCb 1
o ]
ﬁ 1 b= st (x107) bin SM EXP Pull
Y + 1 BR(B° — K%tu™) [15,19] 0.914+0.12 0.67+£0.12 +1.4
A 3
= i BR(B"— K%t up7)  [16,19] 1.66+0.15 1.23+£0.20 +1.7
,_O 0 1 1 1

0

5 10 15 20
JHEP 06 (2014) 133 ¢ [GeV?/c]

(
BR(BT — K*tputp~) [1519] 259+025 1.60+0.32 +2.5
BR(B, — ¢ptp) [15,18.8] 2.20+0.17 1.62+0.20 +2.2
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Let’s take a closer look to the case of B, — ou™ ™

<dBR/de?>

Systematic low-recoil small tensions:

107 x BR(B, — ¢utp™) SM EXP Pull
[0.1,2] 156 £0.35 1.11+0.16 +1.1
[2,5] 155+0.33 0.77+£0.14 +2.2
[5,8] 1.89+£0.40 0.96+0.15 +2.2

0.8

|:| SM from B—->K™" p+pu—
O.7+ |:| SM from Bs—¢ p+p— -
0-67 E 7
0.5 4
o.af —
0.3r
035 5 10 i5 20
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Even if still not statistically significant...

Form factors at low-g? for B, — ¢ (ONLY in BSZ
not available in KMPW) are larger than B — K*, so
we would expect at low-g? an INVERTED hierarchy
with respect to data.

At high-g? data and theory (Lattice) seems ok.

... more data required.

... or a problem of BSZ?
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In the meanwhile (2014) new deviations appear...LFUV anomalies

| CSR Lattice -e-Data
A B B B

(T' L B ] é+
3 B~ Ky -
% LHCb _: ) ot 5
] W
=)
= +t
iy Br (Bt — K*tutu)
o o +0.090
% L S X RK BI‘ (B+ N K+6+67) O 7 5_0074 O 036
10 15 20
q? [GeV?ic] = It deviates 2.60 from SM.
¢ 2 .+.u.4c.b, fB.aB.ar, ._‘_.B.dl.e, I = equals to 1 in SM (universality of lepton coupling).
= LHCb 1 i
i ] = NP coupling # to pand e.
15 ]
i : | ] Conceptually Rx very relevant:
1 :

M Tensions in R cannot be explained in the SM by

0.5F . neither factorizable power corrections” nor

long-distance charm™.

% 5 1 15 20
R [GeV3cd]
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New category of LFUV observables: Q5 = P/s — Pj5 (BELLE)

15 ; ; 15
1 SM from DHMV
10b [ NP Example 1.0
05} 1 0.5
CSE 0.0 dﬁ 0.0}
-05 | 1 -0.5
-1.0 | ] -1.0
_15 1 1 1 _15
0 5 10 15 20
q* [GeV?/c?]
Figure 3:

[S. Wehle et al. PRL118 (2017)]

SM from DHMV
1 NP Example

1 1 1

5 10 15 20

q* [GeV?/c?]

Q4 and Qs observables with SM and favored NP “Scenario 1" from Ref. [6].

Table 2: Results for the lepton-flavor-universality-violating observables Q4 and Qs. The first uncertainty is
statistical and the second systematic.

Joaquim Matias

q° in GeV?/c* 04 s
[1.00,6.00] 0.498 +0.527 +0.166 0.656 £0.485+0.103
[0.10,4.00] —0.723+0.676+:0.163 —0.097 £0.601 +0.164
[4.00,8.00] 0.448 +0.392 +0.076 0.498 +£0.410+0.095
[14.18,19.00] 0.0414+0.565+0.082 0.778 £0.502 + 0.065

Universitat Autonoma de Barcelona

Flavour anomalies in b — s£¢ processes, where we are and what's next



and a new LFUV surprise ... Ry~

[0.045,1.1] [1.1,6]
0 ‘0, 4 pulls H Ry Ry
R = Br(B° = K™ pu™) Exp. || 06670000 | 06850022
K Br(BO — K*0ete—) SM 0.92+0.02 | 1.0040.01
1.2 e 2.0 ———— T
& B ] § r ]
1.0k kN N
& ET Ve E & 15 ]
08 B T ] : :
C ® LHCb ] i i
041 B SM from CDHMV R + ]
r SM from EOS . 0.5 ® LHCb ]
0.2 Vv SM from flav.io ] L BaBar -
[ LHCDb Preliminary & sM ;Z: Jca ° i LHCb Preliminary B:H: ' 1
ool v v i v v v v 1 0.0 L= T R P RS S S R S S
0 1 2 3 4 5 6 5 10 15 20
q2 [GeV2/04] » PRD 86 (2012) 032012 q2 [GeV2/04]

* PRL 103 (2009) 171801

@ Both Rx and Ry~ are very clean in the SM and for ¢> > 1 GeV?>.

@ Lepton mass effects even in the SM are important in the first bin.
— Our error size in 1st and 2nd bin in agreement with Isidori et al. (including QED — 0.03).

@ In presence of New Physics or for ¢> < 1 GeV? hadronic uncertainties return.
o Typical wrong statement "Ry - is ALWAYS a very clean observable”, indeed it is substantially less clean
and more FF dependent than any optimized observable.
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What is the impact now

on the global fit of the new data?
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Global analysis of b — s/

[Capdevila, Crivellin, Descotes, JM, Virto]
175 observables in total (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

@ B — K*up (P12, Py 545, Fr in 5 large-recoil bins + 1 low-recoil bin)+available electronic
observables.

...April's update of Br(B — K*uu) showing now a deficit in muonic channel.
...April’s new result from LHCb on R},

® B — dup (P1, Pyg, F, in 3 large-recoil bins + 1 low-recoil bin)

@ Bt — Ktuu, B — K% (BR) (¢ = e, u) (Rx is implicit)

@ B — Xiv, B— Xsuu, Bs — pp (BR).

@ Radiative decays: B® — K*0y (A7 and Sk+,), BT — K**v, B; — ¢y

» New Belle measurements for the isospin-averaged but lepton-flavour dependent (Q4,5 = Pi’fs — Pi%):
P = o PA(BY) + (1 - 0.) P(B°)

» New ATLAS and CMS measurements on P;.
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Fit 2016: Statistical Approach

Frequentist approach: C; = C5M + ¢NP, with NP assumed to be real (no CPV)
XH(C) = [Oaxp = On(C )] [Cov™jk [Oarp — On(CI )i

@ Cov = Cov®® + Cov'l.
@ Calculate Cov'™: correlated multigaussian scan over all nuisance parameters
@ Cov'" depends on CNP: Must check this dependence

For the Fit:
@ Minimise x? — x2,, = x*(CNT%)  (Best Fit Point = CN7'0)
@ Confidence level regions: x?(CNP) — X2, < Axon
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Where we stand? Results 1D fits: All b — s¢¢ and LFUV fit

@ Hypotheses “NP in some C; only” (1D, 2D, 6D) to be compared with SM [CCDMV,1704.05340]
All

1D Hyp. Best fit | 10 \ 20 | Pullgy; | p-value
Chy -1.11 [ [-1.28,-0.94] | [-1.45,—-0.75] | 5.8 68
Cy, =—C, || -0.62 | [-0.75,—-0.49] | [-0.88,—0.37] | 5.3 58
Cor =—Ch, || -1.01 | [-1.18,-0.84] | [-1.34,—0.65] | 5.4 61
Chy =—3Chr || -1.07 | [-1.24,-0.90] | [-1.40,-0.72] 5.8 70

LFUV

1D Hyp. Best fit | 10 \ 20 | Pullgy; | p-value
Chy -1.76 | [-2.36,—1.23] | [-3.04,—-0.76] | 3.9 69
Chr =—Ch, || -0.66 | [-0.84,—0.48] | [-1.04,—0.32] | 4.1 78
Cory = —Cy, -1.64 | [-2.13,-1.05] | [-2.52,—0.49] | 3.2 32
Chy = —3Ch || -1.35 | [-1.82,—0.95] | [-2.38,—-0.59] | 4.0 72

Pulls/: how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.
— A scenario with a large SM-pull = big improvement over SM and better description of data.

Global fits test the coherence of a set of deviations with a NP hypothesis versus SM hypothesis

* Other groups (Altmannshofer, Straub et al.) do not have updated results for the All-fit.
— They have 5.2¢ without including Rx+ (1703.09189)
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Improving on the main anomalies — Global Coherence of NP solufion

The 1D solution (all) solves many anomalies and alleviates other tensions

Largest pulls H (P8l \ (pye8l \ Bgf_])dwﬂ, B[Bigiwm, Bgi’ﬂ(*mm,
Experiment —0.304+0.16 [ —0.51 £0.12 [ 0.77+£0.14 | 0.96 4 0.15 1.60 + 0.32
SM pred. —0.82£0.08 | —0.94+0.08 | 1.55+0.33 | 1.88+0.39 2.59+£0.25
Pull (o) -2.9 2.9 +2.2 +2.2 +2.5
Pred. C)7 = —1.1]| =0.50£0.11 | —0.73+£0.12 | 1.30+0.26 | 1.51+0.30 | 2.05+0.18
Pull (o) -1.0 1.3 +1.8 +1.6 +1.2
Largest pulls H R%’G] RE,?;O 45,1.1] R[Il(;l’m
Experiment 0.74570000 [ 0.66700% [ 0.685700%2
SM pred. 1.00£0.01 | 0.924+0.02 | 1.00£0.01
Pull (o) +2.6 +2.3 +2.6
Pred. Cé\LP =—1.1{| 0.79+0.01 | 0.90+0.05 | 0.87 +£0.08
Pull (o) +0.4 +1.9 +1.2

Joaquim Matias
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Improving on the main anomalies — using LFUV solution

Explain or alleviate tension in: P, and large and low-recoil BR, Rx, Rx- and Qs

Largest pulls H (Pl ‘ (P68 ‘ Bg;iwm, Eﬂww* ‘ Bgi’ﬂ(*wm,
Experiment —0.30£0.16 | —0.51£0.12 | 0.774+£0.14 | 0.96 = 0.15 1.60 £+ 0.32
SM pred. —0.82£0.08 | —0.94+0.08 | 1.55+0.33 | 1.88+0.39 2.59 £ 0.25
Pull (o) -2.9 -2.9 +2.2 +2.2 +2.5
Pred. CSI;IHP =—-1.76|| —0.26 £0.12 | —0.52+0.15 | 1.22£0.22 | 1.37£0.25 1.54 £0.10
Pull (o) +0.2 -0.1 1.7 +1.4 -0.3
Largest pulls H R%JG] RL?;O 45,1-1] Rgl(;l’ﬁ]
Experiment 0.74575097 | 0.6670 013 | 0.68570 123
SM pred. 1.00£0.01 | 0.92+0.02 | 1.00£0.01
Pull (c) +2.6 +23 +2.6
Pred. Cj7 — —1.76|| 0.69+0.01 | 0.89£0.09 | 0.83 £ 0.14
Pull (o) 0.7 +1.6 +0.8

LFUV implies a value for Cy,, that even reduces FURTHER the tension.
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2D hypothesis

pfimm===T

3
cih

NP
Cop

Universitat Autonoma de Barcelona

Figure: Allowed regions with all available data (upper) and only LFUV (lower) in good agreement. Constraints from
b — sv observables, B(B — X uu) and B(Bs — pp) always included. Experiments at 3o.
Joaquim Matias
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Consistency with other analyses

3F =
I
}
2 5
1
i TUATLAS)
1L S 5 Belle]
i — N CcMS
i m ) i LHCDb
= 4 v All
<o le) !\ . - =S
(&) | N—+~" (@)
i }
i ‘ =
-1f ] =
=
F——=— o
—054— ==
-2 ] 05 ///// —— LFU observables
T b — spp global fit
—3L B —1.0 flavio b
_3 —_5 3 o 1 > 3 flavio ——= all, fivefold non-FF hadr. uncert.
|
T T T + T T
chpP —2.0 —15 —1.0 —05 0.0 0.5 1.0 1.5
3 SH Re C¥

[Altmannshofer, Stangl, Straub]

@ Different angular observables

ELrFuy @ Different form factor inputs (BSZ)

@ Different treatment of hadronic corrections (full-FF)
@ No update table of global fit available (only plots)

@ Same NP scenarios favoured (higher significances for
-3 -2 -1 o 1 2 3 [Altmannshofer, Stangl, Straub])
cs'l

[Capdevila, Crivellin, SDG, Matias, Virto]
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Other similar works

Similar findings for other fits along same lines (no time to cover)
@ Hurth, Mahmoudi, Martinez Santos, Neshatpour
@ Ghosh, Nardecchia, Renner
@ D’Amico et al....
Consistency in the pattern of deviations from
@ b — suu branching ratios
@ b — suu angular observables
@ LFUV ratios
Two types of hadronic uncertainties, but variety of approaches
@ Form factors: fit to LCSR and lattice, EFT + power corrections
@ cc contributions: order of magnitude, LCSR, fit to the data
@ all approaches give consistent results (favoured NP scenarios. . .)
(more will be discussed in the rest of the session)
(see also corresponding talks in session)
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6D fit the most important one

We take all Wilson coefficients SM-like and chirally flipped as free parameters:
(neglect scalars and tensor operators)

Lot | G | Ch | G | G | Cuow

Best fit +0.03 112 +0.31 +0.03 +0.38 +0.02
To | [-0.01,+0.05] | [~1.34,—0.88] | [+0.10,+0.57] | [+0.00,+0.06] | [—0.17, +1.04] | [—0.28, +0.30]
20 || [-0.03,40.07] | [~1.54,—0.63] | [~0.08,40.84] | [~0.02,40.08] | [~0.59,+1.58] | [~0.54, +-0.68]

The SM pull moved from 3.6 0 — 5.0 o (fit “All’ with the latest CMS data at 8 TeV included)

The pattern (very similar to DHMV15):

et 20, Cy; <0,Ch, > 0,Ch 20, Ch, >0, Clg, 20

Co,, is compatible with the SM much beyond 3 o, all the other coefficients at 1-2 o.
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LFUV (Rg) and b — su*u~ converges: (Coherence lI)

The independent analysis of b — seTe™ and b — su™u~ shows:

Re C§

—0.5 1

—— LFU observables

b— spp global fit

-1.01 flavipto.21 — al

20 15 -10 05 00 05 10 15
ReCY

o Cy, ~—-0(1) e (9. ~ 0 compatible with SM albeit with large error bars.
3F BARSARRARDRRRERRRRERSass: ; 3 ot zl
i._..i BRB-Kuu) + BR(B-Kee) within [1,6] : 0
[ Albssuuand bosee | ol p 4 \(5
2 S 2r 1
TV IATLAS|
; 10 £ Bele]
1 CMs
- 73 LHCb
L 2o [
b -1t fs
—of -2
bt sl
3 2 4 ) 3 2 1 0 1 =2 3

NP
Ca,

2015, with R

Joaquim Matias

NP
Co,,

2017, with Rk, Ri+, Qa5
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Another analysis [Agltmannshofer,
Stangl,Straub] using BSZ and different
approach finds same results
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LFUV (Rg) and b — su*u~ converges: (Coherence lI)

It shares the same explanation than P} and other b — suu tensions. [M. Alguero, B. Capdevila, SDG, JM]

1.2
(Rk) Exp
L (P55 EXp (LHCb)
1 B o) 1.0
0.8/
1.0 .
g ¢ 06/ \
3 3
0.4/
0.5/ (Re) Exp
(P5)1,61 Exp (LHCb)
I (Ps)p6 Exp (Belle)
0.2t m e
0.0:. ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.0t ‘ ‘ : ‘ ‘
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 0.2 0.4 0.6
(Pshas (Ps"1,61

Only NP in Cy,, (BLUE), Green (LHCDb), Gray (Belle).
= The attempts of explanation of anomalies in b — su ™~ based on hadronic arguments enter in crisis...
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Coherence llI: Inverted analysis

|—{—| data from LHCb
1.0

+ data from Belle

- SM from DHMV

Pred from LFUV CONP=-1.76 in 1704.05340

Experiment: Assume ONLY LFUV

__________

observables are measured: Rx, Rx+ and Q475 0.5 it { | Predfrom LFUV C10NP=+1.27 in 1704.05446
Question: What they predict for P;?
Three cases: £ 00 —

@ Cy, = —1.76 (RED) from our paper
1704.05340. [ [

® Cio, = +1.27 (BROWN) from 1704.05446. | 1 #
5

@ NP in Cyp. = as bad as SM (ORANGE)

0 5 10 1 20

q*(GeV?)
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Progress on hadronic uncertainties
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How far we can (and it is worth to) go on the theoretical precision for:

@ b — suu: Optimized observables: P;

and non-optimized observables S;, F1,, B

@ LFUV observables: Rx—_k k+4 and Q;

Important to find a balance between:

a) Precision / conservative approach for non-perturbative pieces.

) Parametric and model dependent assumptions of LCSR computation.

... idea behind optimized and SFF treatment is to reduce as much as possible this dependence.

Final Goal: New Physics Discovery should be robust and NOT depend largely on b.
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Improvements on b — s~ observables
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Two main places where one can do progress:

@ Form Factors:

e Different Theoretical Treatment of Form Factors:
= Full form factor approach:
Particular method specific to the set of Form Factors.

All errors and correlations depend on inner LCSR assumptions.

= Soft form factor approach: valid for any FF/flexible, robust and conservative.

General method valid for any set of Form Factors.

Main correlations are encoded via robust large-recoil symmetries, ... independent of LCSR assumptions.

Natural language for construction of OPTIMIZED observables P,.
@ Choice of LCSR Form Factor:

@ KMPW: based on LCSR with B meson distribution amplitudes.

@ BSZ: based on LCSR with K* light-meson distribution amplitudes.

@ Non-factorizable perturbative and non-perturbative (i.e. long distance charm contribution)
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Form Factors and their Treatment
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Theoretical Treatment of Form Factors: SOFT FORM FACTOR APPROACH

@ Scheme definition:
(%) = 7208V (g®) and  §(¢?) = MEEER Ay (g%) — TEITES Ay(g?)

mB+mK* mp
((*0 K} |Heg| B) = Ci&i + ®p @ T, @ D + O(A/my)
C; = 1+ O(as) hard-vertex renormalization and T; hard-scattering kernels computed in
as-expansion. ®; light-cone wave functions.
Ff'ull((IZ) — Foo('flfﬂ) 4+ AF9s ((]2) + AFp.c.((ZQ) Fjull V Al AZ
@ F*(£., &) main source of correlations: robust large-recoil symmetries independent of LCSR details.

mp mp + M= mp
3 mp + Mg~ 2F i~ ! ! 2F i+

T +0(as, A/my) corr

breaking of large-recoil symmetries:

e AF?(¢%): as scheme-dependent correction (Beneke et al.)
— Improvement: O(a?) correction (Beneke et al.) but subleading
e AFP“(g?): expansion in g2 /m?

@ central value obtained from fit to full form factor.
@ Treatment of error: O(A/ms) x F (model-independent and scheme dependent) as large as cv of p.c. itself
or fully correlated (LCSR dependent) and scheme independent
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Different Form Factor determinations

B-meson distribution amplitudes.

Light-meson distribution amplitudes+EOM.

@ Interestingly in BSZ (update from BZ) some of most
relevant FF from BZ moved towards KMPW. For example:

VBZ(0) =0.41 — 0.34, APZ(0) =0.29 — 0.27

@ The size of uncertainty in BSZ = size of error of p.c.

FF-KMPW  Fi . (0) b
fox 034 —2100%
for  034f5p5  —4.3%53
fhe 0395555 22055
VBKT 0367075 -4.870%
APKT 0257018 030703
ABKT 0237000 —0.851 758
ABET 029700 —18.2437
TP 031101 —4610d
TP 031101 —3.2753
TPET 022700 —10.3737

FF-BSZ B K* B, — ¢

Table: The B — K*) form factors from
LCSR and their z-parameterization.

Joaquim Matias Universitat Autonoma de Barcelona

Ap(0)  0.356+0.046  0.389 % 0.045
A1(0)  0.269+0.029 0.296 - 0.027
Ap(0)  0.256+£0.033  0.246 % 0.029
v (0) 0.341 +0.036 0.387 -+ 0.033
T1(0) 0.282+£0.031  0.309 & 0.027
T5(0) 0.282+£0.031  0.309 & 0.027
Ty3(0)  0.668+0.083  0.676 +0.071

Table: Values of the form factors at ¢> = 0 and their uncertainties.

* 6 — 10% shift in one DA affected the error of twist-4
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Impact of an improvement of 50% in the error size

Framework: I-QCDF + SFF + KMPW+ p.c. + conservative estimate of errors of p.c.

What is the impact in the region of the anomaly [4,6] and [6,8] of improving FF error by 50% in:

- T T T T T [ T T T T T T

- L AR
@ Optimized observable P; (in percentage § e A..m

present error size) » Belledata © CMS data ]
[7ISM from DHMV ]
SM from ASZB

Py 6 = —0.82 % 0.08(10%) — 0.06(8%)

— interestingly BSZ-FF+full-FF approach finds 0.05 0 F

Pls.s = —0.94%0.08(9%) — 0.06(6%)

-0.5F
@ Non-optimized observable S; -

_1-
Ssa,6) = —0.35 £ 0.12(34%) — 0.06(17%) I —

e | e
10 15

2.8 and 3.0 o from SM 2 [Gev2/c4]
5'5 = —-0434+0 10(23%) — ()_()5(11%) » JHEP 02 (2016) 104  * ATLAS-CONF-2017-023 q
6.8] : : - PRL 118 (2017) CMS-PAS-BPH-15-008

Optimized observables are less sensitive to FF changes (as expected) than non-optimized.

At present our conservative estimate include in general both approaches and FF,
... in the future we may think in averaging them.
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LHCb ultimate precision expected in RUN || _

Projections from LHCDb for P! in Phase-1l Upgrade. [Taken from LHCD]

~uwn 1 T T T T T T

a 0.8 I SM from DHMV
- LHCb Run 1

0.6 Phase-ll Upgrade

n 2
0.4 %
0.2 *‘j |
-0
0.2 0o
0.4 %ﬂ%
-0.6 H

-0.8

-
-
-
-

L

0 1 2 3 4 5 ® 7 8
q? [GeV?/c?

-
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Information that could be extracted with present theory precision

A large number of small bins open the window in
P} for a different observable: zero of P;.

At LO:

_ mym%Cet
mbC$H ar mBCSH (q%)

@ =

zero not sensitive to C (at LO).

[J At NLO:

DDDD @ Large shift of zero of P! from ¢Z5M ~ 2
-1.0

(Ps")

DD GeV2to ¢& 8 ~ 3.8 GeV2.

D . . CNP__ NP

HE @ Marginal shift of zero ¢, W T
iiii GeV?

: Green (Sc1): CNF = —CNF = —0.66
0 2 ) 4 ) 6 8 Red (Sc2): CI'F = —1.76
q°(GeV?)
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Non-factorizable contributions:

Perturbative and from long-distance charm
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Non-factorizable perturbative contributions in a, expansion

Correction not contained in the definition of the QCD form factors for heavy-to-light transitions:
= they should be added on top of ANY Form Factor computation

T = & (CC(LO) aZCFC£1)> +]7; fB]\];I; ay Z/—@Bi / dud g o (u) Ty (1, w)

a=1,| & fx- 1 refers to the transverse decay constant. Two types of non-factorizable contributions:

@ Hard spectator scattering (7,): matrix elements of 4-quark op. and the chromomagnetic Og operator
Os O1-6

S S S % S
S % S 2 S
(a) (b)
@ Diagrams involving the b — s transition only (C,
@ j@

%é;i;; O1_¢ 016

(c) (d)
— Improvement: O(a?) correction.. probably marginal and not known
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Perturbative and non-perturbative charm

Problem: Charm-loop yields ¢>— and hadronic-dependent contribution with Oz o structures that may
mimic New Physics.

CSH(¢?) = Cosmpert + CNF +50CS P (q?).  i=1,],0

Perturbative: Cosyipert = C5M + Y (¢?)

with Y (¢?) stemming from one-loop matrix elements of 4-quark operators O; .

...O(ay) corrections to 07‘3% of Y (¢?) included via Cl(H b but only O 2 (previous slide)

— Marginal Perturbative improvement with the 2-loop matrix elements of penguin operators
Non-perturbative: 5C5“P (q?)

More difficult to make progress here:

Use LCSR to try to estimate long-distance contribution with soft-gluon exchange.
One can try to ask data:

— the proof of existence of a significant long-distance ¢?-contribution requires a Cy dependent on ¢>.
(besides the known or included already)
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Option 1: Theory approach to long-distance charm

1. THE FIRST REAL COMPUTATION IN LITERATURE (Khodjamirian, Mannel, Pivovarov, Wang).

= long-distance effect by current- current operators O, » together with the c-quark e.m. current:

HEK (pq) = i [ dae'® (K (p) T {el)3e(2) [C101 + Co0A1} | B(p + )

H ;1 O1 = (5pypcr)(€ry’br),  Oa = (517,¢1)(€17°b1)
QD ° “ @ emission of one soft gluon (with low
3 K - virtuality but nonvanishing momentum)
- o from the c-quark loop.
: : @ dispersion relation is used to extend it to
N all region.

@ hadronic matrix elements uses LCSR with
E , - B-meson DA.

(O] (@

Figure 1: Charm-loop effect in B — K ¢+¢~: (a)-the leading-order factorizable contribution; (b)
nonfactorizale soft-gluon emission, (¢),(d)-hard gluon exchange.

Joaquim Matias Universitat Autonoma de Barcelona Flavour anomalies in b — s{¢ processes, where we are and what's next



@ charm-loop effect is represented as a correction

S 4 . S |
- to the Wilson coefficient Cy:
i 2
eff i e cc(i)LD
;E 0 Csti = C9HSMpert(q2) + C§F + 5:6C 2 xvpw (4%
S _5 i =1, ],0 (where s; = 1 KMPW)
=)
2 -4 @ itis ¢® and helicity dependent result (contrary to

) 4 6 s 10 12 a constant universal contribution)
¢* (GeV?) @ At face value KMPW long-distance charm
‘ ‘ computation (s; = 1) implies that the anomaly
becomes larger!!!

@ How do we treat it? We introduce a parameter
s; = [—1, 1] for each amplitude to include the
possibility of a relative phase = our predictions
tipically has the largest error from l.d.c.

@ Constructive approach: Improve this
> 4 6 8 10 12 computation within LCSR (more gluons) and/or
7* (GeV?) lattice computation of I.d.c if possible.
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Improving on KMPW analysis (Bobeth, Chrzaszcz, van Dyk, Virto’ 1707.07305)

Using analytic properties of #, function together with experimental information on B — K*.J/¢) and B — K*(25)
and including known QCDF corrections at NLO in «, write a general parametrization of #, in a z-expansion

parametrization. ...caveat impact of order of z-truncation.
I SM prediction (prior)
0.8\ . 771 NP fit (posterior LLH2) 10.8
LHCb 2015
B— K",
04} 10.4
o
® 00 @ 0.
~
-04 1=0.4
-0.38 1=0.8
EOS ‘ : ‘ ‘ ‘ |
0 2 4 6 8 10 12 i 0 2 4 6 8 10 12 14
7 eV ¢'[GeV]
FIG. 2. Prior and posterior predictions for P} within the SM Our prediction for P/ using KMPW and allowing s; from [—1, 1].

and the NP Cy benchmark, compared to LHCb data.

A comparison between both shows that left prediction fits nicely within our error band but with a clear preference
for values pointing to larger anomaly in [4,6] if Bobeth et al. is used (> 30).
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Long distance charm tests using data |l

More arguments to discard long distance charm as a solution.

data from LHCb
SM from DHMV
SM from DHMV unbinned

Extreme values 8=0,1 from Blake et al.

e Empirical model of long distance
contributions based on the use of data on
final states involving JF¢ = 17~
resonances [1709.03971]

= Agreement with our error estimate.

= Anomaly cannot be explained.

-1.0

7*(GeV?)

This plot is reevaluated USING KMPW (in the original paper BSZ is used)

Joaquim Matias Universitat Autonoma de Barcelona Flavour anomalies in b — s{¢ processes, where we are and what's next



What data can tell us on the existence or not
of a new and significant ¢° dependence in Cq?

Joaquim Matias Universitat Autonoma de Barcelona Flavour anomalies in b — s£¢ processes, where we are and what's next



Option 2: What data can tell us on the question charm versus New Physics?

How to disentangle? Is our long-dist cc estimate using KMPW as order of magnitude correct?
Fit to C{'F bin-by-bin of b — suu data:

@ NP is universal and ¢>—independent.
e Hadronic effect associated to cc dynamics is (likely) ¢>—dependent.

1_0;\ T T T T E

osf | s eeHSNESSE- 4

0.0[ : : : : ]
s EESES L _ _ _ _________ GlobalFit — — — |- — - _ ]
—1-0?:' B _} IR e S (=
-1 e S

0] 5 1‘0 15 20
g% (GeV?)
@ The excellent agreement of bins [2,5], [4,6], [5,8]: Cévp 25— 16+ 0.7,
CNPIE — 13404, PP = 1.3+ 0.3 shows no indication of additional 42— dependence.

EXPERIMENT: More precise data will allow to reduce this error between these two bins.
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Another approach....now converging with us if no extra hypothesis used

The analysis of [Ciuchini et al.] introduces for each helicity A = 0, =1 a second-order polynomial in ¢?:

2 4
(0) q (1) q (2)
hy=nh h hy™’.
A r 1 GevZ ™ * 1 Gev4 ™
then enter the B — K*u™ .~ transversity amplitudes as follows:
N g 1) q )
AY = A (s =0)+ = B ISAN
LR L’R(S )+ q> (1 Gev2'Y * 1 Gevd

App = App(si=0)

N ¢ q! ]
+ 5 B0+ r9) + o Y+ My + : GeV4(hS“2) + 1@,
Ai_,R = Ai_,R(Si =0)
N [ 0 ¢ 1 1 q* 2 N

* Be careful one should not include a pole in 4, (h) should be zero).
hf) — (O, h&l) — (9 and the question is:

is there any need for h(f) that will imply a Cy(¢?) beyond known ones?
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e We implemented [JHEP 1704 (2017) 016] different analysis: SM, NP, different FFs,...=
Updated table with no A{:

Example:
* NP _ __
2 B — K'uponly - Gy, =—1.1
X?nin;h:() =63.30
n 0 1 2 3
X2 62.10 51.60 50.50 50.00
X2 g 2(m) 1.23 (0.3 0) 10.50 (2.4 0) 1.14 0.3 o) 0.53 (0.1 0)

n® 066739  (120) 1977332 (385) 1.62712  (160) 1437118  (1.80)
n® —1.92798 (240) -12907170 (0.80) —1.4571%0 (1.00)
r® —0.167924  (0.70) —0.0973% (1.2 0)
n® 0.00733% (0.0 0)
n® —0.147148  (010) 190119 (120) 1871271 (140) 193738 (210)
A —0.8179%8  (1.20) —05670%8 (1.20) —0.657032 (1.10)
h® —0.047922  (0.20) —0.02%31 (0.1 0)
n® —0.00%3:%9 (0.2 )
R{®
RSV —1.287117  (11o) —224715% (140) —2.0879% (230)
n$® 0.087%47  (1.10) 016751 (1.3 0)
B$® —0.0073% (0.5 o)

n refers to hY

No significant improvement in the quality of the fit that require to go beyond the h&l) term.
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(Ciuchini et al.) paper (next talk) also converges now in this direction

In the frame where only data is used PMD (no controversial enforced constraints at very low-g?):
— A comparison between 2015 and 2017 analysis quite interesting.

‘ Par. ‘ @ | an ‘ (I11) ‘ av) ‘ ) ‘ V1) |
Parameter | Absolute value Phase (rad)
oxr - - 0.015+0.014 | —0.011+0.013 | 0.003+0.013 | 0.015+0.014
Y (5.8+2.1)-10° 3544 0.56 cye —1.58+0.28 | —1.53+£0.25 | —1.66+0.29 - —0.54+0.17 | —1.64+0.29
o) (29421104 09411 ot —0.10 £0.45 - —0.18 £ 0.46 - 0.09+0.25 —1.6+1.0
L?Z) oE e cRP - 0.03+0.16 - —0.12+0.22 0.54 % 0.17 0.009  0.200
hg (34£28)-107° -04£17 C%‘i - - - —1.22+£037 | —0.09+025 | —0.91+0.76
h(f) (4.0£4.0)-107 02415 [h{”] - 10t 21+1.2 20+ 1.2 22+1.3 1.8+1.2 1.3+1.0 20+13
B (14£110)- 1070 01417 [h{]-10% | 0.0790.067 | 0.079£0.067 | 0.076£0.065 | 0.083+£0.069 | 0.086+0.072 | 0.076%0.064
) L T h].10* | 053+£019 | 054+0.19 0.52+0.19 0.56 % 0.20 0.60 % 0.21 0.52+0.19
hy (2.6+2.0)-10 38+13
o [h§7]-10* | 0.30+£0.23 | 0.30+0.22 0.30+0.23 0.45 £0.26 0.32+£0.24 0.28+0.22
he (25+15)-10* | 1.85+0.45U4.75+0.75 R 10* | 0224020 | 022+0.19 0.22+0.19 0.21+0.19 0.26 £ 0.22 0.22 £ 0.19
A0 (124£09)- 107 | ~090£0.70U0.80 +0.80 R 100 | 0.23+£019 | 0.23+0.19 0.23+0.20 0.30 £0.21 0.32+£0.22 0.23+0.19
B (22+1.4)-1075 00412 [R]-10* | 0.052+0.045 | 0.053£0.045 | 0.052£0.044 | 0.046+0.042 | 0.064%0.053 | 0.050% 0.044
[2?)].10% | 0.046+£0.038 | 0.046+0.039 | 0.046£0.039 | 0.092+0.050 | 0.070+0.047 | 0.045+0.038

Table 5. Results for the parameters defining the nonfactorizable power corrections hy obt

without using the numerical information from 1ef, [§7). Table 2 Results from the fit for WCs and hadronic contributions in the PMD approach. See Sec. 2.1 for details on the siz NP

scenarios.

LEFT (2015): ONLY large-recoil B — K*u*p~ data, hi large with NO New Physics assuming that there is an
unknown large long-distance charm with emphasis on h® #0.

RIGHT (2017): MORE data (low-recoil missing) and now they NEED New Physics and in 4 out of 6 scenarios:
h? is one order of maghnitude smaller and more consistent with zero!

P22 — (2.2 4+ 1.4) x 1075 — BPPYT = (0.4 £ 0.4) x 1077

— in good agreement with our previous result (except Sc4 and partly Sc5)
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What about LFUV observables?
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Classification according to sensitivity fo hadronic uncertainties in presence
of New Physics: Ratios of BR, Rx

(Rk)

Rk: Simple structure: f1 o7 — one SFF () at large-recoil.

1.0

— fo lepton mass suppressed or arises in the presence of (pseudo)scalar while f7 suppressed by CS.

(Rk) Exp
B R
Wl (R(CEP=-CY)

BLUE C}P, RED C}f = —C}P

e C)F < 0and C}}Y > 0 same weight adds coherently.
e Central value of Rx prefers a large negative contrib.
| to CY® in excellent agreement with P/ anomaly.
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Classification according to sensitivity fo hadronic uncertainties in presence
of New Physics: Ratios of BR, Ry~

Rk-+: More complex structure, 6-8 Amplitudes and 7 form factors.
Impact of long-distance charm from KMPW on B — K* larger than on B — K.

@ In presence of NP or for ¢*> < 1 GeV? hadronic uncertainties return.
@ Two surces: R+ o (C!' — C£)§FF and interference in quadratic (C!' — C¢)? terms.

:L.O’
i i Predictions Ry~
-1 I 1 Bins [0.045,1.1] [1.1,6.] [15.,19.]
= o.sl 2 ] Standard Model 0.916 +0.025 1.000 £ 0.006  0.998 =+ 0.001
= : : Cg,:f'f =-111 0.897 4+ 0.049  0.867 +0.080  0.788 + 0.005
& o.7} . Chf =—1.76 0.895 +0.084 0.827 +£0.137  0.698 & 0.009
i CoF = —Clf, = —0.62  0.866 +£0.057 0.751£0.027 0.714 =+ 0.006
o.sf 1
° 57 ¢ 1st bin is expected to be SM-like.

e Cy < 0 gets near saturation at large-recoil and Cy < 0 Cyo > 0 adds coherently.

At the point C3)F = —1.1, C§Y = 0:

KMPW-sch.1: BSZ-sch.1 JC-sch.2
€ =0317020. ¢, =0.101085 £, =0.324+0.03,¢ =0.12+£0.02 & =0.31+0.04,§ =0.10+0.02
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Disentangling New Physics: Ratios of Branching Ratios

Value of Observable

1.0

0.9

0.8

0.6

0.7

[1.1,6.0] GeV?

Low Recoil

[0.045,1.1] GeV?

11

i

= O

+
I
L I
ot H s §a B
I IT ! |I‘
1
i : TD I [ |u 3] 3]
i it Y |5
. ! | | i
I
L
it * 8
I I
I I
L 1 L
L
Ry Rg- Ry Rx Rx- Rs Rx Rg Rs

>

>
>
| 2
| 2

| Ry
| KMPW-FF but R, using BSZ-FF (only available).

| SM-[BLACK]

1 Five “good” scenarios:

Sc. 1 [GREEN]: C)F = —1.1,

Sc. 2 [BLUE]: C)F = —CNP = —0.61,

Sc. 3 [YELLOW]: C)P = —Cj,, = —1.01,
Sc. 4 [ORANGE]: C)F = —3C)F = —1.06,

Sc. 5:[GRAY]: The best fit point in the
six-dimensional fit.

is computed using very conservative

ATTENTION: In presence of NP Ry , are largely sensitive to FF choices

Joaquim Matias
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Disentangling New Physics: Differences of Optimized observables

Value of Observable

Q; observables are better to disentangle NP: Q; inheritates the properties of optimized observables.

[0.045,1.1] GeV? [1.1,6.0] GeV?
| B E
o I Q=P =P
02; DD H E ﬁ SM-[BLACK] and dashed-red [BELLE data]
i DHI ] | Five “good” scenarios:
01F |E|

1 » Sc.1[GREEN]: CG§F = —1.1,

] Sc. 2 [BLUE]: C)F = —C}} = —0.61,

Sc. 3 [YELLOW]: C§F = —Cy,, = —1.01,
Sc. 4 [ORANGE]: C}F = —3C)F = —1.06,

Sc. 5:[GRAY]: The best fit point in the
six-dimensional fit.

°~°IHHHHI e il
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Ql Qz Q4 Q5 Bs  Bgs Ql Qz Q4 Qs

A precise measurement of ()5 in [1,6] can discard the solution Cy = —C in front of all other sols.
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What is the impact of LFUV observables in presence of New Physics of reducing FF error by 50%7?

Ric1.1.6] SM | CP = —1.76 (sc1) | ONT = —CNF = —0.66 (sc2) | 6D (sc3)
ref. +1.000 + 0.006 | +0.827 +0.137 +0.736 £ 0.029 +0.737 £ 0.080
FF-50% | +1.000 +0.003 | +0.827 & 0.073 +0.736 + 0.015 +0.737 + 0.044
Qs[1.1,6] SM | O = —1.76 (sc1) | CFP = —C}F = —0.66 (sc2) | 6D (sc3)
ref. —0.007 = 0.001 | +0.535 =+ 0.033 +0.166 + 0.019 +0.304 £ 0.029
FF-50% || —0.007 +0.001 | +0.535 4 0.028 +0.167 £ 0.016 +0.304 + 0.027

e Marginal improvement on the very robust 5 observable compared to Ry~.
e Ry~ even after a 50% improvement sc1 and sc2 only differ by 10 and sc2-sc3 are indistinguishable.

e ()5: after a 50% improvement sc1 and sc2 differ by 100 and sc2-sc3 differ by > 40.
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What about experimental improvement from LFUV?
Two key observables: Ry and Qs

e Ri: Doubling (or a bit more) the statistics and reducing the systematics beyond 50%
— combined error on Rk reduces by ~ 40% to +0.6 assuming same CV.

The LFUV fit will find:

Coefficient CN¥ = ¢; — oM Best fit 10 3o Pullgy
N ~1.56 [-1.99,-1.19] [-3.16,—0.56] 5.1 <
P = - —0.61 [-0.73,-0.48] [-1.01,—-0.25] 5.3 <

This will lead to 50 only with LFUV

The all fit will find:

Coefficient CNF = ¢; — c?M  Best fit 10 30 Pullgyy
N -1.13 [-1.28,-0.97] [-1.58,—0.64] 6.8 <
P = —ciF —0.61 [-0.71,—-0.51] [-0.93,-0.31] 6.5«

¢ ()5 will be able to disentangle the right scenario together with Ry
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(Q); can disentangle if hy, ~ 0 and marginal or relevant: Scenario [V

All started from the large P, anomaly and can be solved with Q5.

Assume three scenarios to close a discussion: _
Belle data in blue

@ ()5 is negative in the range [4,8] then:

Csl)\I‘P = 7‘1.76, (w\l = *l-l,‘ C1oe < 0
@ a solution like C1p. < 0 proposed by [Ciuchini et al.] will be
preferred. 1.0-
e all b — s¢¢ anomalies at large and low-recoil would be of T
hadronic origin and one would need O(40) large new
unknown parameters to fix it... | |
— 0.5-
gIQ‘ [ 1
@ ()5 is positive but very small < 0.1 in [4,8] then: S
@ a solution like Cy = —Cjo = —0.6 is preferred (also CY" is 1
possible) and »* are small/medium but not negligible. 0.0/ =
@ (5 is positive but large 0.5 — 0.2 in [4,8] then:
@ a solution like Cy < 0 is preferred. -0.55 5 4 £ 5 5 5 S
@ alarge value around 0.5 — 0.4 would imply a negligibly PGev?)

o - - >\ ~
small non-factorizable long distance charm h* ~ 0. [M. Alguero, B. Capdevila, SDG, JM'18]

In summary the larger and positive Q5 is the more marginal the long distance charm.
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Conclusions

@ For the first time, we observe in particle physics a large set of coherent deviations in observables:
iNb — sp* ™ Pl Byt getptu—s B, sgu+ - (Iow and large-recoil).
in LFUV observables: Rx,Rx-, Qus
pointing in a global fit to different patterns/scenarios of NP:
@ Cy, = —1.1, Cy. = 0 with pull-SM 5.80
@ Cy, = —Cio, = —0.62, Cy. = 0 with pull-SM 5.3¢
@ The fit using only LFUV observables finds Violations of LFU at the 3-4¢ level.
@ Crucial to follow different theoretical treatments (SFF or FF) and FF LCSR approaches.

@ Disentangling scenarios with LFUV observables:
@ Ry~ very sensitive to hadronic uncertainties in presence of NP in particular to changes in FF.

@ Ry excellent probe in SM but also in NP due to simple structure.
@ ()5 unigue capacity to disentangle Cy = —C} and Cy, but also size of possible hadronic contributions.
@ An experimental improvement on R error by 40% assuming same cv:
A fit with only LFUV will move above 50 and near 7o of complete fit.
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Information that could be extracted with present theory precision

| F!!E
05 EED. 05
! iﬁ i

g o Ill.!ﬂF!!i < o0 umDU g
HHH DDD Hﬂ
I 0omo s
-0.5
-0.5

-1.0

0 2 4 6 8 105 2 4 6 8 0 2 4 6 8
(GeV?) q(GeV?) q*(GeV?)

Similar information than the Amplitude analysis. Shape information is new and crucial.
B Predictions of P, 5 4 in smaller bins:

Green (Sc1): C'F = —CNF = —0.66 Red (Sc2): CI'F = —1.76
Blue: 6D fit (Sc3) CXF = +0.03, C3'F = —1.12, CYF = +0.31, C7, = 40.03, Cyy = +0.38, Cyor = +0.02

e P, # 0 only 6D with RHC e P, in Sc2 zero shifted from 4 to 6 GeV? e P; is SM-like.
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Impact of correlations: two types of correlations

We include the most robust correlations:
— coming from large-recoil symmetries and correct for their breaking.

We tested the impact of including also ”inner LCSR correlations” in BSZ for P;.

— increases your sensitivity to LCSR hypothesis.

P.[4.0,6.0] | scheme 1 [CDHM] AFPC = F x O(A/mp)

_0.72+0.05 correl. from large-recoil sym. — &, |, AFPC unc.
: : (minimal input from LCSR on correlations)
~0.7240.03 AFPC from fit to LCSR
—0.72 4+ 0.03 correl. from large-recoil sym. — &, |, AFTC unc.
tull BSZ 072+ 0.03 AFPCfrom fully correlated fit to LCSR
. ' + correl. from LCSR between ¢, |, AFFC
errors only from pc with BSZ form factors (maximal input from LCSR correlétions)
[Capdevila, Descotes, Hofer, JM]

Difference dominated by our conservative assumption O(A/m;)x FF ~ 10% while BSZ (~ 5%)
— including all or part of the inner correlations will impact on the size of conservative assumption

Unprotected observables like S; much more sensitive to inner LCSR correlations than P;.
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