Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

Joaquim Matias

Universitat Autònoma de Barcelona

Lyon Workshop

Joaquim Matias

Universitat Autònoma de Barcelona

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

The framework: $b \rightarrow s\ell\ell$ effective Hamiltonian, Wilson Coefficients

NP changes short-distance $C_i = C_i^{SM} + C_i^{NP}$ for SM or involve additional operators O_i

- Tensor operators ($\gamma \rightarrow T$)

• Chirally flipped $(W \to W_R)$ $\mathcal{O}_{7'} \propto (\bar{s}\sigma^{\mu\nu}P_L b)F_{\mu\nu}, \mathcal{O}_{9'} \propto (\bar{s}\gamma_{\mu}P_R b)(\bar{\ell}\gamma^{\mu}\ell) \dots$ • (Pseudo)scalar ($W \to H^+$) $\mathcal{O}_S \propto (\bar{s}P_B b)(\bar{\ell}\ell), \mathcal{O}_P \propto (\bar{s}P_B b)(\bar{\ell}\gamma_5 \ell)$ $\mathcal{O}_T \propto \bar{s}\sigma_{\mu\nu}(1-\gamma_5)b\;\bar{\ell}\sigma_{\mu\nu}\ell$

The Anomalies

P'_{5} a closer look to the most tested anomaly (Type-I)

Is this an statistical fluctuation?

 P_5^\prime was proposed in DMRV, JHEP 1301(2013)048

$$P_5' = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_{\parallel}|^2)}} = P_5^{\infty} \left(1 + \mathcal{O}(\alpha_{\mathrm{s}} \xi_{\perp}) + \text{p.c.}\right) \,.$$

Optimized Obs.: Soft form factor (ξ_{\perp}) cancellation at LO.

- 2013: 1fb⁻¹ dataset LHCb found 3.7 σ .
- 2015: $3fb^{-1}$ dataset LHCb (**black**) found 3σ in 2 bins. \Rightarrow Predictions (**in orange**) from DHMV.
- Belle (red) confirmed it in a bin [4,8] few months ago.

Is there a problem with hadronic uncertainties?: Two robust and independent analysis (same as F_L):

- ORANGE DHMV: using i-QCDF and KMPW FF+ 4 types of corrections.
- MAGENTA ASZB: using full FF from BSZ.

.... are in nice agreement and finds the anomaly.

Other $b \rightarrow s\mu^+\mu^-$ observables tensions show up: (Coherence II)

Systematic deficit of muons at large-recoil but also at low-recoil:

 $dB/dq^2 [10^{-8} \times c^4/GeV^2]$

 $dB/dq^2 [10^{-8} \times c^4/GeV^2]$

Let's take a closer look to the case of $B_s \rightarrow \phi \mu^+ \mu^-$

Syster	natic	low-recoil	small	tensions:
--------	-------	------------	-------	-----------

$10^7 \times \mathrm{BR}(B_s \to \phi \mu^+ \mu^-)$	SM	EXP	Pull
[0.1,2]	1.56 ± 0.35	1.11 ± 0.16	+1.1
[2,5]	1.55 ± 0.33	0.77 ± 0.14	+2.2
[5,8]	1.89 ± 0.40	0.96 ± 0.15	+2.2

Even if still not statistically significant...

Form factors at low-q² for $B_s \rightarrow \phi$ (ONLY in BSZ not available in KMPW) are larger than $B \rightarrow K^*$, so we would expect at low-q² an INVERTED hierarchy with respect to data.

At high-q² data and theory (Lattice) seems ok.

... more data required.

... or a problem of BSZ?

In the meanwhile (2014) new deviations appear...LFUV anomalies

$$R_K = \frac{\text{Br}\left(B^+ \to K^+ \mu^+ \mu^-\right)}{\text{Br}\left(B^+ \to K^+ e^+ e^-\right)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

 \Rightarrow It deviates **2.6** σ from SM.

 \Rightarrow equals to 1 in SM (universality of lepton coupling).

 \Rightarrow NP coupling \neq to μ and e.

Conceptually R_K very relevant:

Tensions in R_K cannot be explained in the SM by neither factorizable power corrections* nor long-distance charm*.

New category of LFUV observables: $Q_{4,5} = P_{4,5}^{\prime \mu} - P_{4,5}^{\prime e}$ (BELLE)

[S. Wehle et al. PRL118 (2017)]

Figure 3: Q_4 and Q_5 observables with SM and favored NP "Scenario 1" from Ref. [6].

Table 2: Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

q^2 in GeV ² / c^2	Q_4	Q5
[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

and a new LFUV surprise ... R_{K^*}

• Both R_K and R_{K^*} are very clean in the SM and for $q^2 \ge 1$ GeV².

• Lepton mass effects even in the SM are important in the first bin.

 \rightarrow Our error size in 1st and 2nd bin in agreement with Isidori et al. (including QED \rightarrow 0.03).

- In presence of New Physics or for $q^2 < 1$ GeV² hadronic uncertainties return.
 - Typical wrong statement "*R_{K*}* is ALWAYS a very clean observable", indeed it is substantially less clean and more FF dependent than any optimized observable.

What is the impact now

on the global fit of the new data?

[Capdevila, Crivellin, Descotes, JM, Virto]

175 observables in total (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

B → K^{*}µµ (P_{1,2}, P'_{4,5,6,8}, F_L in 5 large-recoil bins + 1 low-recoil bin)+available electronic observables.

...April's update of $Br(B \to K^* \mu \mu)$ showing now a deficit in muonic channel.

...April's new result from LHCb on R_K^*

- $B_s \rightarrow \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \ell \ell$ (BR) ($\ell = e, \mu$) (R_K is implicit)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$ (BR).
- Radiative decays: $B^0 \to K^{*0}\gamma$ (A_I and $S_{K^*\gamma}$), $B^+ \to K^{*+}\gamma$, $B_s \to \phi\gamma$
- ► New Belle measurements for the isospin-averaged but lepton-flavour dependent ($Q_{4,5} = P_{4,5}^{\prime \mu} P_{4,5}^{\prime e}$):

$$P_i^{\prime \,\ell} = \sigma_+ \, P_i^{\prime \,\ell}(B^+) + (1 - \sigma_+) \, P_i^{\prime \,\ell}(\bar{B}^0)$$

▶ New ATLAS and CMS measurements on P_i .

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

$$\chi^{2}(C_{i}) = [O_{\exp} - O_{th}(C_{i}^{NP})]_{j} [Cov^{-1}]_{jk} [O_{\exp} - O_{th}(C_{i}^{NP})]_{k}$$

- $\mathbf{Cov} = \mathbf{Cov}^{\mathsf{exp}} + \mathbf{Cov}^{\mathsf{th}}.$
- Calculate Covth: correlated multigaussian scan over all nuisance parameters
- Cov^{th} depends on C_i^{NP} : Must check this dependence

For the Fit:

- Minimise $\chi^2 \rightarrow \chi^2_{\min} = \chi^2(C_i^{NP\,0})$ (Best Fit Point = $C_i^{NP\,0}$)
- Confidence level regions: $\chi^2(C_i^{NP}) \chi^2_{\min} < \Delta \chi_{\sigma,n}$

Where we stand? Results 1D fits: All $b \rightarrow s\ell\ell$ and LFUV fit

		All				
1D Hyp.	Best fit	1 σ	2 σ	$Pull_{\mathrm{SM}}$	p-value	
$\mathcal{C}_{9\mu}^{ m NP}$	-1.11	[-1.28, -0.94]	[-1.45, -0.75]	5.8	68	
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.62	[-0.75, -0.49]	[-0.88, -0.37]	5.3	58	
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}'$	-1.01	[-1.18, -0.84]	[-1.34, -0.65]	5.4	61	
$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-1.07	[-1.24,-0.90]	[-1.40,-0.72]	5.8	70	
			LFUV			
1D Hyp.	Best fit	1 σ	2 σ	$Pull_{\mathrm{SM}}$	p-value	
$\mathcal{C}_{9\mu}^{ m NP}$	-1.76	[-2.36, -1.23]	[-3.04, -0.76]	3.9	69	
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.66	[-0.84, -0.48]	[-1.04, -0.32]	4.1	78	
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}^{\prime}$	-1.64	[-2.13, -1.05]	[-2.52, -0.49]	3.2	32	
						<u></u>

• Hypotheses "NP in some C_i only" (1D, 2D, 6D) to be compared with SM

[CCDMV,1704.05340]

 $Pull_{SM}$: how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.

 \rightarrow A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.

Global fits test the coherence of a set of deviations with a NP hypothesis versus SM hypothesis

* Other groups (Altmannshofer, Straub et al.) do not have updated results for the All-fit.

 \rightarrow They have 5.2 σ without including R_{K^*} (1703.09189)

The 1D solution (all) solves many anomalies and alleviates other tensions

Largest pulls	$\langle P_5' \rangle^{[4,6]}$	$\langle P_5' \rangle^{[6,8]}$	$\mathcal{B}^{[2,5]}_{B_s \to \phi \mu^+ \mu^-}$	$\left \begin{array}{c} \mathcal{B}^{[5,8]}_{B_s \to \phi \mu^+ \mu^-} \end{array} \right.$	$\mathcal{B}^{[15,19]}_{B^+ o K^{*+} \mu^+ \mu^-}$
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	0.77 ± 0.14	0.96 ± 0.15	1.60 ± 0.32
SM pred.	-0.82 ± 0.08	-0.94 ± 0.08	1.55 ± 0.33	1.88 ± 0.39	2.59 ± 0.25
Pull (σ)	-2.9	-2.9	+2.2	+2.2	+2.5
Pred. $C_{9\mu}^{\rm NP} = -1.1$	-0.50 ± 0.11	-0.73 ± 0.12	1.30 ± 0.26	1.51 ± 0.30	2.05 ± 0.18
Pull (σ)	-1.0	-1.3	+1.8	+1.6	+1.2

Largest pulls	$R_K^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$
Experiment	$0.745_{-0.082}^{+0.097}$	$0.66\substack{+0.113\\-0.074}$	$0.685\substack{+0.122\\-0.083}$
SM pred.	1.00 ± 0.01	0.92 ± 0.02	1.00 ± 0.01
Pull (σ)	+2.6	+2.3	+2.6
Pred. $C_{9\mu}^{\rm NP} = -1.1$	0.79 ± 0.01	0.90 ± 0.05	0.87 ± 0.08
$Pull(\sigma)$	+0.4	+1.9	+1.2

.... we will come back to that later on.

Explain or alleviate tension in: P'_5 and large and low-recoil BR, R_K , R_{K^*} and Q_5

Largest pulls	$\langle P_5' \rangle^{[4,6]}$	$\langle P_5' \rangle^{[6,8]}$	$\mathcal{B}^{[2,5]}_{B_s \to \phi \mu^+ \mu^-}$	$\mathcal{B}^{[5,8]}_{B_s o \phi \mu^+ \mu^-}$	$\mathcal{B}_{B^+ \to K^{*+} \mu^+ \mu^-}^{[15,19]}$
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	0.77 ± 0.14	0.96 ± 0.15	1.60 ± 0.32
SM pred.	-0.82 ± 0.08	-0.94 ± 0.08	1.55 ± 0.33	1.88 ± 0.39	2.59 ± 0.25
Pull (σ)	-2.9	-2.9	+2.2	+2.2	+2.5
Pred. $C_{9\mu}^{\rm NP} = -1.76$	-0.26 ± 0.12	-0.52 ± 0.15	1.22 ± 0.22	1.37 ± 0.25	1.54 ± 0.10
Pull (σ)	+0.2	-0.1	+1.7	+1.4	-0.3
	Largest pulls	$ \qquad \qquad R_K^{[1,6]} $	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$	
	Experiment	$0.745^{+0.097}_{-0.082}$	$0.66^{+0.113}_{-0.074}$	$0.685^{+0.122}_{-0.083}$	
	SM pred.	1.00 ± 0.01	0.92 ± 0.02	1.00 ± 0.01	
	Pull (σ)	+2.6	+2.3	+2.6	
F	Pred. $\mathcal{C}_{9\mu}^{\mathrm{NP}} = -1.7$	6 0.69 ± 0.01	0.89 ± 0.09	0.83 ± 0.14	
	Pull (a)	-07	±16	108	

LFUV implies a value for $C_{9\mu}$ that even reduces FURTHER the tension.

2D hypothesis

Figure: Allowed regions with all available data (upper) and only LFUV (lower) in good agreement. Constraints from $b \rightarrow s\gamma$ observables, $\mathcal{B}(B \rightarrow X_s \mu \mu)$ and $\mathcal{B}(B_s \rightarrow \mu \mu)$ always included. Experiments at 3σ .

Joaquim Matias

Universitat Autònoma de Barcelona

Flavour anomalies in $b \to s\ell\ell$ processes, where we are and what's next

Consistency with other analyses

[Capdevila, Crivellin, SDG, Matias, Virto]

[Altmannshofer, Stangl, Straub]

- Different angular observables
- Different form factor inputs (BSZ)
- Different treatment of hadronic corrections (full-FF)
- No update table of global fit available (only plots)
- Same NP scenarios favoured (higher significances for [Altmannshofer, Stangl, Straub])

Other similar works

Similar findings for other fits along same lines (no time to cover)

- Hurth, Mahmoudi, Martinez Santos, Neshatpour
- Ghosh, Nardecchia, Renner
- D'Amico et al....

Consistency in the pattern of deviations from

- $b
 ightarrow s \mu \mu$ branching ratios
- $b
 ightarrow s \mu \mu$ angular observables
- LFUV ratios

Two types of hadronic uncertainties, but variety of approaches

- Form factors: fit to LCSR and lattice, EFT + power corrections
- $c\bar{c}$ contributions: order of magnitude, LCSR, fit to the data
- all approaches give consistent results (favoured NP scenarios...)

(more will be discussed in the rest of the session)

(see also corresponding talks in session)

We take all Wilson coefficients SM-like and chirally flipped as free parameters:

(neglect scalars and tensor operators)

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{ m NP}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02
1σ	[-0.01, +0.05]	[-1.34, -0.88]	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]
2 σ	[-0.03, +0.07]	[-1.54, -0.63]	[-0.08, +0.84]	[-0.02, +0.08]	[-0.59, +1.58]	[-0.54, +0.68]

The SM pull moved from 3.6 $\sigma \rightarrow$ 5.0 σ (fit "All' with the latest CMS data at 8 TeV included)

The pattern (very similar to DHMV15):

$$\mathcal{C}_7^{\mathrm{NP}} \gtrsim 0, \, \mathcal{C}_{9\mu}^{\mathrm{NP}} < 0, \, \mathcal{C}_{10\mu}^{\mathrm{NP}} > 0, \, \mathcal{C}_7' \gtrsim 0, \, \mathcal{C}_{9\mu}' > 0, \, \mathcal{C}_{10\mu}' \gtrsim 0$$

 $C_{9\mu}$ is compatible with the SM much beyond 3 σ , all the other coefficients at 1-2 σ .

Joaquim Matias

LFUV (R_K) and $b \rightarrow s\mu^+\mu^-$ converges: (Coherence III)

1 The independent analysis of $b \rightarrow se^+e^-$ and $b \rightarrow s\mu^+\mu^-$ shows:

• $C_{9\mu} \sim -\mathcal{O}(1)$ • $C_{9e} \simeq 0$ compatible with SM albeit with large error bars.

LFUV (R_K) and $b \rightarrow s\mu^+\mu^-$ converges: (Coherence III)

2 It shares the same explanation than P'_5 and other $b \to s\mu\mu$ tensions. [M. Alguero, B. Capdevila, SDG, JM]

Only NP in $C_{9\mu}$ (**BLUE**), Green (LHCb), Gray (Belle).

 \Rightarrow The attempts of explanation of anomalies in $b \rightarrow s\mu^+\mu^-$ based on hadronic arguments enter in crisis...

Joaquim Matias

Coherence III: Inverted analysis

Experiment: Assume ONLY LFUV observables are measured: R_K , R_{K^*} and $Q_{4.5}$

Question: What they predict for P'_5 ?

Three cases:

- $C_{9\mu} = -1.76$ (RED) from our paper 1704.05340.
- $C_{10\mu} = +1.27$ (BROWN) from 1704.05446.
- NP in $C_{10e} \Rightarrow$ as bad as SM (ORANGE)

Progress on hadronic uncertainties

How far we can (and it is worth to) go on the theoretical precision for:

• $b \rightarrow s \mu \mu$: Optimized observables: P_i

and non-optimized observables S_i , F_L , \mathcal{B}

• LFUV observables: $R_{X=K,K*,\phi}$ and Q_i

Important to find a balance between:

- a) Precision / conservative approach for non-perturbative pieces.
- b) Parametric and model dependent assumptions of LCSR computation.

... idea behind optimized and SFF treatment is to reduce as much as possible this dependence.

Final Goal: New Physics Discovery should be robust and NOT depend largely on b.

Joaquim Matias

Improvements on $b \rightarrow s \mu^+ \mu^-$ observables

Two main places where one can do progress:

• Form Factors:

- Different Theoretical Treatment of Form Factors:
 - \Rightarrow Full form factor approach:
 - 1 Particular method specific to the set of Form Factors.
 - 2 All errors and **correlations** depend on inner LCSR assumptions.
 - ⇒ Soft form factor approach: valid for any FF/flexible, robust and conservative.
 - 1 General method valid for any set of Form Factors.
 - 2 Main correlations are encoded via robust large-recoil symmetries, ... independent of LCSR assumptions.

Natural language for construction of OPTIMIZED observables *P_i*.

- Choice of LCSR Form Factor:
 - KMPW: based on LCSR with B meson distribution amplitudes.
 - BSZ: based on LCSR with K^* light-meson distribution amplitudes.
- Non-factorizable perturbative and non-perturbative (i.e. long distance charm contribution)

Form Factors and their Treatment

Theoretical Treatment of Form Factors: SOFT FORM FACTOR APPROACH

Scheme definition:

$$\xi_{\perp}(q^{2}) = \frac{m_{B}}{m_{B} + m_{K^{*}}} V(q^{2}) \quad \text{and} \quad \xi_{\parallel}(q^{2}) = \frac{m_{B} + m_{K^{*}}}{2E} A_{1}(q^{2}) - \frac{m_{B} - m_{K^{*}}}{m_{B}} A_{2}(q^{2})$$
$$\langle \ell^{+} \ell^{-} \bar{K}_{i}^{*} | \mathcal{H}_{\text{eff}} | \bar{B} \rangle = C_{i} \xi_{i} + \Phi_{B} \otimes T_{i} \otimes \Phi_{K^{*}} + \mathcal{O}(\Lambda/m_{b})$$

 $C_i = 1 + O(\alpha_s)$ hard-vertex renormalization and T_i hard-scattering kernels computed in α_s -expansion. Φ_i light-cone wave functions.

$$F^{full}(q^2) = F^{\infty}(\boldsymbol{\xi}_{\perp}, \boldsymbol{\xi}_{\parallel}) + \triangle F^{\alpha_s}(q^2) + \triangle F^{p.c.}(q^2) \qquad F^{full} = V, A_1, A_2, \dots$$

• $F^{\infty}(\xi_{\perp},\xi_{\parallel})$ main source of correlations: **robust large-recoil symmetries** independent of LCSR details.

$$\xi_{\perp} = \frac{m_B}{m_B + m_{K^*}} V = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1 = T_1 = \frac{m_B}{2E_{K^*}} T_2 \qquad +O(\alpha_s, \Lambda/m_b) \text{ corr}$$

breaking of large-recoil symmetries:

• $\Delta F^{\alpha_s}(q^2)$: α_s scheme-dependent correction (Beneke et al.)

 \rightarrow Improvement: $\mathcal{O}(\alpha_s^2)$ correction (Beneke et al.) but subleading

- $\triangle F^{p.c.}(q^2)$: expansion in q^2/m_b^2
 - central value obtained from fit to full form factor.
 - Treatment of error: $O(\Lambda/m_b) \times F$ (model-independent and scheme dependent) as large as cv of p.c. itself or fully correlated (LCSR dependent) and scheme independent

Different Form Factor determinations

B-meson distribution amplitudes.

FF-KMPW	$F^i_{BK^{(*)}}(0)$	b_1^i
f_{BK}^+	$0.34_{-0.02}^{+0.05}$	$-2.1^{+0.9}_{-1.6}$
f_{BK}^0	$0.34_{-0.02}^{+0.05}$	$-4.3^{+0.8}_{-0.9}$
f_{BK}^T	$0.39\substack{+0.05 \\ -0.03}$	$-2.2^{+1.0}_{-2.00}$
V^{BK^*}	$0.36\substack{+0.23 \\ -0.12}$	$-4.8^{+0.8}_{-0.4}$
$A_1^{BK^*}$	$0.25\substack{+0.16 \\ -0.10}$	$0.34_{-0.80}^{+0.86}$
$A_2^{BK^*}$	$0.23_{-0.10}^{+0.19}$	$-0.85^{+2.88}_{-1.35}$
$A_0^{BK^*}$	$0.29\substack{+0.10 \\ -0.07}$	$-18.2^{+1.3}_{-3.0}$
$T_1^{BK^*}$	$0.31_{-0.10}^{+0.18}$	$-4.6^{+0.81}_{-0.41}$
$T_2^{BK^*}$	$0.31\substack{+0.18 \\ -0.10}$	$-3.2^{+2.1}_{-2.2}$
$T_3^{BK^*}$	$0.22\substack{+0.17 \\ -0.10}$	$-10.3^{+2.5}_{-3.1}$

Light-meson distribution amplitudes+EOM.

• Interestingly in BSZ (update from BZ) some of most relevant FF from BZ moved towards KMPW. For example:

 $V^{BZ}(0) = 0.41 \rightarrow 0.34, \quad A_1^{BZ}(0) = 0.29 \rightarrow 0.27$

• The size of uncertainty in BSZ = size of error of p.c.

FF-BSZ	$B \to K^*$	$B_s \to \phi$
$A_{0}(0)$	0.356 ± 0.046	0.389 ± 0.045
$A_1(0)$	0.269 ± 0.029	0.296 ± 0.027
$A_{12}(0)$	0.256 ± 0.033	0.246 ± 0.029
V(0)	0.341 ± 0.036	0.387 ± 0.033
$T_1(0)$	0.282 ± 0.031	0.309 ± 0.027
$T_2(0)$	0.282 ± 0.031	0.309 ± 0.027
$T_{23}(0)$	0.668 ± 0.083	0.676 ± 0.071

Table: The $B \to K^{(*)}$ form factors from LCSR and their *z*-parameterization.

Table: Values of the form factors at $q^2 = 0$ and their uncertainties.

* 6-10% shift in one DA affected the error of twist-4

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

Impact of an improvement of 50% in the error size

Framework: I-QCDF + SFF + KMPW+ p.c. + conservative estimate of errors of p.c.

What is the impact in the region of the anomaly [4,6] and [6,8] of improving FF error by 50% in:

• Optimized observable P'_5 (in percentage present error size)

 $\begin{array}{l} P_{5[4,6]}^{\prime}=-0.82\pm0.08(\mathbf{10\%})\rightarrow0.06(\mathbf{8\%})\\ \rightarrow \text{ interestingly BSZ-FF+full-FF approach finds 0.05} \end{array}$

 $P_{5[6,8]}' = -0.94 \pm 0.08 (\mathbf{9\%}) \rightarrow 0.06 (\mathbf{6\%})$

• Non-optimized observable S_5

$$\begin{split} S_{5[4,6]} &= -0.35 \pm 0.12 (\mathbf{34\%}) \rightarrow 0.06 (\mathbf{17\%}) \\ S_{5[6,8]} &= -0.43 \pm 0.10 (\mathbf{23\%}) \rightarrow 0.05 (\mathbf{11\%}) \end{split}$$

Optimized observables are less sensitive to FF changes (as expected) than non-optimized.

At present our conservative estimate include in general both approaches and FF, ... in the future we may think in averaging them. Projections from LHCb for P'_5 in Phase-II Upgrade. [Taken from LHCb]

A large number of small bins open the window in P'_5 for a different observable: zero of P'_5 .

At LO:

$$q_0^2 = -\frac{m_b m_B^2 \mathcal{C}_7^{\text{eff}}}{m_b \mathcal{C}_7^{\text{eff}} + m_B \mathcal{C}_9^{\text{eff}}(q_0^2)}$$

zero not sensitive to C_{10} (at LO).

At NLO:

• Large shift of zero of P_5' from $q_0^{2SM}\simeq 2$ GeV² to $q_0^{C_9^{\rm NP}}\simeq 3.8~{\rm GeV^2}.$

 $\bullet~{\rm Marginal~shift~of~zero}~q_0^{C_9^{\rm NP}=-C_{10}^{\rm NP}}\simeq 2.7~{\rm GeV^2}$

Green (Sc1): $C_9^{\rm NP} = -C_{10}^{\rm NP} = -0.66$ Red (Sc2): $C_9^{\rm NP} = -1.76$

Flavour anomalies in $b \to s\ell\ell$ processes, where we are and what's next

Joaquim Matias

Universitat Autònoma de Barcelona

Non-factorizable contributions:

Perturbative and from long-distance charm

Joaquim Matias

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

Non-factorizable perturbative contributions in α_s expansion

Correction not contained in the definition of the QCD form factors for heavy-to-light transitions: \Rightarrow they should be added on top of ANY Form Factor computation

$$\mathcal{T}_{a} = \xi_{a} \left(C_{a}^{(0)} + \frac{\alpha_{s} C_{F}}{4\pi} C_{a}^{(1)} \right) + \frac{\pi^{2}}{N_{c}} \frac{f_{B} f_{K^{*},a}}{M_{B}} \Sigma_{a} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_{0}^{1} du \Phi_{K^{*},a}(u) T_{a,\pm}(u,\omega) \Phi_{K^{*},a}(u) \Phi_{K^{*},a$$

 $a = \perp, \parallel \& f_{K^*,\perp}$ refers to the transverse decay constant. Two types of non-factorizable contributions:

• Hard spectator scattering (T_a): matrix elements of 4-quark op. and the chromomagnetic O_8 operator

 \mathcal{O}_{1-6} (d)

• Diagrams involving the $b \rightarrow s$ transition only (C_a)

(c) (d) (e) \rightarrow Improvement: $\mathcal{O}(\alpha_s^2)$ correction... probably marginal and not known

Universitat Autònoma de Barcelona

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

Perturbative and non-perturbative charm

Problem: Charm-loop yields q^2 – and hadronic-dependent contribution with $O_{7,9}$ structures that may mimic New Physics.

$$C_{9i}^{\text{eff}}(q^2) = C_{9\,\text{SMpert}} + C_9^{\text{NP}} + \mathbf{s_i} \delta \mathbf{C_{9i}^{c\bar{\mathbf{cLD}}}}(\mathbf{q}^2). \qquad \mathbf{i} = \bot, \|, \mathbf{0}$$

Perturbative: $C_{9 \text{ SMpert}} = C_9^{\text{SM}} + Y(q^2)$ with $Y(q^2)$ stemming from one-loop matrix elements of 4-quark operators O_{1-6} $\mathcal{O}(\alpha_s)$ corrections to $C_{7,9}^{\text{eff}}$ of $Y(q^2)$ included via $C_{\perp,\parallel}^{1 \text{ (nf)}}$ but only $O_{1,2}$ (previous slide)

ightarrow Marginal Perturbative improvement with the 2-loop matrix elements of penguin operators

Non-perturbative: $\delta C_{9i}^{c\bar{c}LD}(q^2)$

More difficult to make progress here:

- 1 Use LCSR to try to estimate long-distance contribution with soft-gluon exchange.
- 2 One can try to ask data:
 - \rightarrow the proof of existence of a significant long-distance q^2 -contribution requires a C_9 dependent on q^2 . (besides the known or included already)

Option 1: Theory approach to long-distance charm

- 1. THE FIRST REAL COMPUTATION IN LITERATURE (Khodjamirian, Mannel, Pivovarov, Wang).
- \Rightarrow long-distance effect by current- current operators $O_{1,2}$ together with the c-quark e.m. current:

$$\mathcal{H}^{B \to K^*}_{\mu}(p,q) = i \int d^4 x e^{iqx} \langle K^*(p) | T\{\bar{c}(x)\gamma_{\mu}c(x)[C_1O_1 + C_2O_2]\} | B(p+q) \rangle$$

$$O_1 = (\bar{s}_L \gamma_\rho c_L) (\bar{c}_L \gamma^\rho b_L), \quad O_2 = (\bar{s}_L^j \gamma_\rho c_L^i) (\bar{c}_L^i \gamma^\rho b_L^j)$$

- emission of one soft gluon (with low virtuality but nonvanishing momentum) from the c-quark loop.
- dispersion relation is used to extend it to all region.
- hadronic matrix elements uses LCSR with B-meson DA.

Figure 1: Charm-loop effect in $B \to K^{(*)}\ell^+\ell^-$: (a)-the leading-order factorizable contribution; (b) nonfactorizale soft-gluon emission, (c),(d)-hard gluon exchange.

• charm-loop effect is represented as a correction to the Wilson coefficient *C*₉:

 $C_9^{\text{eff i}} = C_9^{\text{eff}}_{\text{SM pert}}(q^2) + C_9^{\text{NP}} + s_i \delta C_9^{c\overline{c}(i)LD}_{\text{KMPW}}(q^2)$

 $i = \perp, \parallel, 0$ (where $s_i = 1$ KMPW)

- it is q² and helicity dependent result (contrary to a constant universal contribution)
- At face value KMPW long-distance charm computation ($s_i = 1$) implies that the anomaly becomes larger!!!
- How do we treat it? We introduce a parameter s_i = [-1, 1] for each amplitude to include the possibility of a relative phase ⇒ our predictions tipically has the largest error from l.d.c.
- **Constructive approach**: Improve this computation within LCSR (more gluons) and/or lattice computation of I.d.c if possible.

Improving on KMPW analysis (Bobeth, Chrzaszcz, van Dyk, Virto'1707.07305)

Using analytic properties of \mathcal{H}_{λ} function together with experimental information on $B \to K^* J/\psi$ and $B \to K^* \psi(2S)$ and including known QCDF corrections at NLO in α_s write a general parametrization of \mathcal{H}_{λ} in a *z*-expansion parametrization. ...caveat impact of order of *z*-truncation.

FIG. 2. Prior and posterior predictions for P_5' within the SM and the NP C_9 benchmark, compared to LHCb data.

A comparison between both shows that left prediction fits nicely within our error band but with a clear preference for values pointing to **larger anomaly** in [4,6] if Bobeth et al. is used ($> 3\sigma$).

Joaquim Matias

Our prediction for P'_5 using KMPW and allowing s_i from [-1, 1].

Long distance charm tests using data II

More arguments to discard long distance charm as a solution.

- Empirical model of long distance contributions based on the use of data on final states involving $J^{\rm PC} = 1^{--}$ resonances [1709.03971] \Rightarrow Agreement with our error estimate.
- \Rightarrow Anomaly cannot be explained.

This plot is reevaluated USING KMPW (in the original paper BSZ is used)

What data can tell us on the existence **or not** of a new and significant q^2 dependence in C_9 ?

Option 2: What data can tell us on the question charm versus New Physics?

How to disentangle? Is our long-dist $c\bar{c}$ estimate using KMPW as order of magnitude correct?

1 Fit to C_9^{NP} bin-by-bin of $b \to s\mu\mu$ data:

- NP is universal and q^2 -independent.
- Hadronic effect associated to $c\bar{c}$ dynamics is (likely) q^2 -dependent.

• The excellent agreement of bins [2,5], [4,6], [5,8]: $C_9^{NP[2,5]} = -1.6 \pm 0.7$, $C_9^{NP[4,6]} = -1.3 \pm 0.4$, $C_9^{NP[5,8]} = -1.3 \pm 0.3$ shows no indication of <u>additional</u> q^2 - dependence. EXPERIMENT: More precise data will allow to reduce this error between these two bins.

Another approach....now converging with us if no extra hypothesis used

The analysis of [Ciuchini et al.] introduces for each helicity $\lambda = 0, \pm 1$ a second-order polynomial in q^2 :

$$h_{\lambda} = h_{\lambda}^{(0)} + \frac{q^2}{1 \text{ GeV}^2} h_{\lambda}^{(1)} + \frac{q^4}{1 \text{ GeV}^4} h_{\lambda}^{(2)}.$$

then enter the $B \to K^* \mu^+ \mu^-$ transversity amplitudes as follows:

$$\begin{split} A_{L,R}^{0} &= A_{L,R}^{0}(s_{i}=0) + \frac{N}{q^{2}} \left(\frac{q^{2}}{1 \text{ GeV}^{2}} h_{0}^{(1)} + \frac{q^{4}}{1 \text{ GeV}^{4}} h_{0}^{(2)} \right), \\ A_{L,R}^{\parallel} &= A_{L,R}^{\parallel}(s_{i}=0) \\ &\quad + \frac{N}{\sqrt{2}q^{2}} \left[(h_{+}^{(0)} + h_{-}^{(0)}) + \frac{q^{2}}{1 \text{ GeV}^{2}} (h_{+}^{(1)} + h_{-}^{(1)}) + \frac{q^{4}}{1 \text{ GeV}^{4}} (h_{+}^{(2)} + h_{-}^{(2)}) \right], \\ A_{L,R}^{\perp} &= A_{L,R}^{\perp}(s_{i}=0) \\ &\quad + \frac{N}{\sqrt{2}q^{2}} \left[(h_{+}^{(0)} - h_{-}^{(0)}) + \frac{q^{2}}{1 \text{ GeV}^{2}} (h_{+}^{(1)} - h_{-}^{(1)}) + \frac{q^{4}}{1 \text{ GeV}^{4}} (h_{+}^{(2)} - h_{-}^{(2)}) \right], \end{split}$$

* Be careful one should not include a pole in A_0 (h_0^0 should be zero).

 $h^{(0)}_{\pm}
ightarrow C_7$, $h^{(1)}_{\lambda}
ightarrow C_9$ and the question is:

is there any need for $h_{\lambda}^{(2)}$ that will imply a $C_9(q^2)$ beyond known ones?

Joaquim Matias

Universitat Autònoma de Barcelona

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

• We implemented [JHEP 1704 (2017) 016] different analysis: SM, NP, different FFs,... \Rightarrow Updated table with no h_0^0 :

Example:

$B \to K^* \mu \mu \text{ only - } C^{NP}_{9\mu} = -1.1$								
$\chi^2_{\min;h=0} = 63.30$								
n	0		1		2		3	
$\chi^{2(n)}_{\min}$	62.1	0	51.6	C	50.5	D	50.00	0
$\chi^{2(n-1)}_{ m min}-\chi^{2(n-1)}_{ m m}$	$_{ m in}^{n)}$ 1.23	(0.3σ)	10.50	(2.4σ)	1.14	(0.3σ)	0.53	(0.1σ)
$h_{+}^{(0)}$	$0.66\substack{+1.06\\-0.55}$	(1.2σ)	$1.97\substack{+1.32\\-0.51}$	(3.8σ)	$1.62^{+1.22}_{-1.00}$	(1.6σ)	$1.43\substack{+1.13\\-0.80}$	(1.8σ)
$h_{+}^{(1)}$			$-1.92\substack{+0.81\\-0.76}$	(2.4σ)	$-1.29\substack{+1.70\\-1.75}$	(0.8σ)	$-1.45\substack{+1.40\\-0.74}$	(1.0σ)
$h_{+}^{(2)}$					$-0.16\substack{+0.24\\-0.09}$	(0.7σ)	$-0.09\substack{+0.08\\-0.16}$	(1.2σ)
$h_{+}^{(3)}$							$0.00\substack{+0.01\\-0.00}$	(0.0σ)
$h_{-}^{(0)}$	$-0.14^{+1.43}_{-0.93}$	(0.1σ)	$1.90\substack{+1.99 \\ -1.64}$	(1.2σ)	$1.87\substack{+2.71\\-1.31}$	(1.4σ)	$1.93\substack{+1.93 \\ -0.93}$	(2.1σ)
$h_{-}^{(1)}$			$-0.81\substack{+0.68\\-0.43}$	(1.2σ)	$-0.56\substack{+0.48\\-1.32}$	(1.2σ)	$-0.65\substack{+0.59\\-0.82}$	(1.1σ)
$h_{-}^{(2)}$					$-0.04\substack{+0.22\\-0.07}$	(0.2σ)	$-0.02\substack{+0.14\\-0.10}$	(0.1σ)
$h_{-}^{(3)}$							$-0.00\substack{+0.00\\-0.00}$	(0.2σ)
$h_{0}^{(0)}$								
$h_0^{(1)}$			$-1.28^{+1.17}_{-1.24}$	(1.1σ)	$-2.24\substack{+1.64\\-1.43}$	(1.4σ)	$-2.08\substack{+0.90\\-1.38}$	(2.3σ)
$h_0^{(2)}$					$0.08\substack{+0.17\\-0.07}$	(1.1σ)	$0.16\substack{+0.17\\-0.12}$	(1.3σ)
$h_0^{(3)}$							$-0.00\substack{+0.01\\-0.00}$	(0.5σ)

n refers to h_{λ}^n

No significant improvement in the quality of the fit that require to go beyond the $h_{\lambda}^{(1)}$ term.

Joaquim Matias

Universitat Autònoma de Barcelona

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

(Ciuchini et al.) paper (next talk) also converges now in this direction

In the frame where only data is used PMD (no controversial enforced constraints at very low-q²): \rightarrow A comparison between 2015 and 2017 analysis quite interesting.

Parameter	Absolute value	Phase (rad)
$h_0^{(0)}$	$(5.8 \pm 2.1) \cdot 10^{-4}$	3.54 ± 0.56
$h_0^{(1)}$	$(2.9 \pm 2.1) \cdot 10^{-4}$	0.2 ± 1.1
$h_0^{(2)}$	$(3.4\pm2.8)\cdot10^{-5}$	-0.4 ± 1.7
$h_{+}^{(0)}$	$(4.0 \pm 4.0) \cdot 10^{-5}$	0.2 ± 1.5
$h_{+}^{(1)}$	$(1.4 \pm 1.1) \cdot 10^{-4}$	0.1 ± 1.7
$h_{+}^{(2)}$	$(2.6\pm 2.0)\cdot 10^{-5}$	3.8 ± 1.3
$h_{-}^{(0)}$	$(2.5\pm 1.5)\cdot 10^{-4}$	$1.85 \pm 0.45 \cup 4.75 \pm 0.75$
$h_{-}^{(1)}$	$(1.2\pm 0.9)\cdot 10^{-4}$	$-0.90 \pm 0.70 \cup 0.80 \pm 0.80$
$h_{-}^{(2)}$	$(2.2 \pm 1.4) \cdot 10^{-5}$	0.0 ± 1.2

Par.	(I)	(11)	(III)	(IV)	(V)	(VI)
C_7^{NP}	-	-	0.015 ± 0.014	-0.011 ± 0.013	0.003 ± 0.013	0.015 ± 0.014
$C_{9,\mu}^{NP}$	-1.58 ± 0.28	-1.53 ± 0.25	-1.66 ± 0.29	-	-0.54 ± 0.17	-1.64 ± 0.29
$C_{9,e}^{NP}$	-0.10 ± 0.45	-	-0.18 ± 0.46	-	0.09 ± 0.25	-1.6 ± 1.0
$C_{10,\mu}^{NP}$	-	0.03 ± 0.16	_	-0.12 ± 0.22	0.54 ± 0.17	0.009 ± 0.200
$C_{10,e}^{NP}$	-	-	_	-1.22 ± 0.37	-0.09 ± 0.25	-0.91 ± 0.76
$ _{ h^{(0)} , 10^4}$	21+12	20 ± 12	2.2 ± 1.3	18 ± 12	13 ± 10	2.0 ± 1.3
$ n_0 \cdot 10$	2.1 ± 1.2	2.0 ± 1.2	2.2 ± 1.5	1.0 ± 1.2	1.0 ± 1.0	2.0 ± 1.5
$ h_{\pm 0}^{(-)} \cdot 10^{4}$	0.079 ± 0.067	0.079 ± 0.067	0.076 ± 0.065	0.083 ± 0.069	0.086 ± 0.072	0.076 ± 0.064
$ h_{-}^{(0)} \cdot 10^4$	0.53 ± 0.19	0.54 ± 0.19	0.52 ± 0.19	0.56 ± 0.20	0.60 ± 0.21	0.52 ± 0.19
$ h_{0}^{(-)} \cdot 10^4$	0.30 ± 0.23	0.30 ± 0.22	0.30 ± 0.23	0.45 ± 0.26	0.32 ± 0.24	0.28 ± 0.22
$ h_{+}^{(1)} \cdot 10^4$	0.22 ± 0.20	0.22 ± 0.19	0.22 ± 0.19	0.21 ± 0.19	0.26 ± 0.22	0.22 ± 0.19
$ h_{-}^{(1)} \cdot 10^4$	0.23 ± 0.19	0.23 ± 0.19	0.23 ± 0.20	0.30 ± 0.21	0.32 ± 0.22	0.23 ± 0.19
12 (2) 104	0.050 1.0.045	0.050 1.0.045	0.050 1.0.044	0.040 1.0.040	0.004 0.059	0.050 1.0.044
$ n_{\pm 0} \cdot 10^{*}$	0.052 ± 0.045	0.053 ± 0.045	0.052 ± 0.044	0.046 ± 0.042	0.064 ± 0.053	0.050 ± 0.044
$ h_{-}^{(2)} \cdot 10^4$	0.046 ± 0.038	0.046 ± 0.039	0.046 ± 0.039	0.092 ± 0.050	0.070 ± 0.047	0.045 ± 0.038

Table 5. Results for the parameters defining the nonfactorizable power corrections h_{λ} obt without using the numerical information from ref. [47].

Table 2 Results from the fit for WCs and hadronic contributions in the PMD approach. See Sec. 2.1 for details on the six NP scenarios.

LEFT (2015): ONLY large-recoil $B \to K^* \mu^+ \mu^-$ data, \mathbf{h}^i_{λ} large with NO New Physics assuming that there is an unknown large long-distance charm with emphasis on $\mathbf{h}^{(2)}_- \neq \mathbf{0}$.

RIGHT (2017): MORE data (low-recoil missing) and now they NEED New Physics and in 4 out of 6 scenarios: $h_{-}^{(2)}$ is one order of magnitude smaller and more consistent with zero!

$$h_{-}^{(2)2015} = (2.2 \pm 1.4) \times 10^{-5} \rightarrow h_{-}^{(2)2017} = (0.4 \pm 0.4) \times 10^{-5}$$

ightarrow in good agreement with our previous result (except Sc4 and partly Sc5)

What about LFUV observables?

Classification according to sensitivity to hadronic uncertainties in presence of New Physics: Ratios of BR, R_K

 $\mathbf{R}_{\mathbf{K}}$: Simple structure: $f_{+,0,T} \rightarrow$ one SFF (f_{+}) at large-recoil.

 $r \to f_0$ lepton mass suppressed or arises in the presence of (pseudo)scalar while f_T suppressed by C_7^{eff} .

BLUE $C_9^{\rm NP}$, RED $C_9^{\rm NP} = -C_{10}^{\rm NP}$

• $C_9^{\rm NP} < 0$ and $C_{10}^{\rm NP} > 0$ same weight adds coherently. • Central value of R_K prefers a large negative contrib. to $C_9^{\rm NP}$ in excellent agreement with P_5' anomaly.

Classification according to sensitivity to hadronic uncertainties in presence of New Physics: Ratios of BR, R_{K^*}

 $\mathbf{R}_{\mathbf{K}^*}$: More complex structure, 6-8 Amplitudes and 7 form factors.

Impact of long-distance charm from KMPW on $B \to K^*$ larger than on $B \to K$.

- In presence of NP or for $q^2 < 1$ GeV² hadronic uncertainties return.
- Two surces: $\delta R_{K^*} \propto (C_i^{\mu} C_i^e) \delta FF$ and interference in quadratic $(C_i^{\mu} C_i^e)^2$ terms.

KMPW-sch.1:
 $\xi_{\perp} = 0.31^{+0.20}_{-0.10}, \xi_{\parallel} = 0.10^{+0.03}_{-0.02}$ BSZ-sch.1
 $\xi_{\perp} = 0.32 \pm 0.03, \xi_{\parallel} = 0.12 \pm 0.02$ JC-sch.2
 $\xi_{\perp} = 0.31 \pm 0.04, \xi_{\parallel} = 0.10 \pm 0.02$

At the point $C_{9\mu}^{\rm NP} = -1.1, C_{9e}^{\rm NP} = 0$:

Flavour anomalies in $b \rightarrow s\ell\ell$ processes, where we are and what's next

Disentangling New Physics: Ratios of Branching Ratios

ATTENTION: In presence of NP $R_{K^*,\phi}$ are largely sensitive to FF choices

Disentangling New Physics: Differences of Optimized observables

A precise measurement of Q_5 in [1,6] can discard the solution $C_9 = -C_{10}$ in front of all other sols.

What is the impact of LFUV observables in presence of New Physics of reducing FF error by 50%?

$R_{K^*[1.1,6]}$	SM	$C_9^{ m NP} = -1.76~(m sc1)$	$C_9^{ m NP} = -C_{10}^{ m NP} = -0.66~(m sc2)$	6D (sc3)	
ref.	$+1.000\pm0.006$	$+0.827 \pm 0.137$	$+0.736 \pm 0.029$	$+0.737 \pm 0.080$	
FF-50%	$+1.000\pm0.003$	$+0.827 \pm 0.073$	$+0.736 \pm 0.015$	$+0.737 \pm 0.044$	
$Q_{5[1.1,6]}$	SM	$C_9^{ m NP} = -1.76~(m sc1)$	$C_9^{ m NP} = -C_{10}^{ m NP} = -0.66$ (sc2)	6D (sc3)	
ref.	-0.007 ± 0.001	$+0.535 \pm 0.033$	$+0.166 \pm 0.019$	$+0.304 \pm 0.029$	
FF-50%	-0.007 ± 0.001	$+0.535 \pm 0.028$	$+0.167 \pm 0.016$	$+0.304 \pm 0.027$	

- Marginal improvement on the very robust Q_5 observable compared to R_{K^*} .
- R_{K^*} : even after a 50% improvement sc1 and sc2 only differ by 1 σ and sc2-sc3 are indistinguishable.
- Q_5 : after a 50% improvement sc1 and sc2 differ by 10 σ and sc2-sc3 differ by $> 4\sigma$.

What about experimental improvement from LFUV? Two key observables: R_K and Q_5

• R_K : Doubling (or a bit more) the statistics and reducing the systematics beyond 50%

 \rightarrow combined error on R_K reduces by $\sim 40\%$ to +0.6 assuming same CV.

Coefficient $\mathcal{C}_i^{NP} = \mathcal{C}_i - \mathcal{C}_i^{SM}$	Best fit	1σ	3σ	$\text{Pull}_{\rm SM}$
$\mathcal{C}^{\mathrm{NP}}_{m{9}}$	-1.56	[-1.99, -1.19]	[-3.16, -0.56]	$5.1 \Leftarrow$
$\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{10}^{\mathrm{NP}}$	-0.61	[-0.73, -0.48]	[-1.01, -0.25]	5.3 (

The LFUV fit will find:

This will lead to 5σ only with LFUV

The all fit will find:

Coefficient $\mathcal{C}_i^{NP} = \mathcal{C}_i - \mathcal{C}_i^{SM}$	Best fit	1σ	3σ	$Pull_{\mathrm{SM}}$
$\mathcal{C}^{\mathrm{NP}}_{9}$	-1.13	[-1.28, -0.97]	[-1.58, -0.64]	6.8 (
$\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{10}^{\mathrm{NP}}$	-0.61	[-0.71, -0.51]	[-0.93, -0.31]	6.5 ⇐

• Q_5 will be able to disentangle the right scenario together with R_K

Joaquim Matias

Q_5 can disentangle if $h_\lambda \simeq 0$ and marginal or relevant: Scenario IV

All started from the large P'_5 anomaly and can be solved with Q_5 .

Assume three scenarios to close a discussion:

- Q_5 is negative in the range [4,8] then:
 - a solution like $C_{10e} < 0$ proposed by [Ciuchini et al.] will be preferred.
 - all b → sℓℓ anomalies at large and low-recoil would be of hadronic origin and one would need O(40) large new unknown parameters to fix it...
- Q_5 is positive but very small < 0.1 in [4,8] then:
 - a solution like $C_9 = -C_{10} = -0.6$ is preferred (also $C_9^{\rm NP}$ is possible) and h^{λ} are small/medium but not negligible.
- Q_5 is positive but large 0.5 0.2 in [4,8] then:
 - a solution like $C_9 < 0$ is preferred.
 - a large value around 0.5 0.4 would imply a negligibly small non-factorizable long distance charm $h^{\lambda} \simeq 0$.

Belle data in blue

In summary the larger and positive Q_5 is the more marginal the long distance charm.

• For the first time, we observe in particle physics a large set of **coherent deviations** in observables:

1 in $b \to s\mu^+\mu^-$: P'_5 , $\mathcal{B}_{B^+\to K^{*+}\mu^+\mu^-}$, $\mathcal{B}_{B_s\to\phi\mu^+\mu^-}$ (low and large-recoil).

2 in LFUV observables: $R_K, R_{K^*}, Q_{4,5}$

pointing in a global fit to different patterns/scenarios of NP:

• $C_{9\mu} = -1.1$, $C_{9e} = 0$ with **pull-SM 5.8** σ

• $C_{9\mu} = -C_{10\mu} = -0.62, C_{9e} = 0$ with pull-SM 5.3 σ

- The fit using only LFUV observables finds Violations of LFU at the $3-4\sigma$ level.
- Crucial to follow different theoretical treatments (SFF or FF) and FF LCSR approaches.
- Disentangling scenarios with LFUV observables:
 - R_{K*} very sensitive to hadronic uncertainties in presence of NP in particular to changes in FF.
 - R_K excellent probe in SM but also in NP due to simple structure.
 - Q_5 unique capacity to disentangle $C_9 = -C_{10}$ and C_9 , but also size of possible hadronic contributions.
- An experimental improvement on R_K error by 40% assuming same cv:

A fit with only LFUV will move above 5σ and near 7σ of complete fit.

Information that could be extracted with present theory precision

Similar information than the Amplitude analysis. Shape information is new and crucial.

Predictions of $P_{1,2,4'}$ in smaller bins:

Green (Sc1): $C_9^{\text{NP}} = -C_{10}^{\text{NP}} = -0.66$ Red (Sc2): $C_9^{\text{NP}} = -1.76$ Blue: 6D fit (Sc3) $C_7^{\text{NP}} = +0.03, C_9^{\text{NP}} = -1.12, C_{10}^{\text{NP}} = +0.31, C_{7'} = +0.03, C_{9'} = +0.38, C_{10'} = +0.02$

• $P_1 \neq 0$ only 6D with RHC • P_2 in Sc2 zero shifted from 4 to 6 GeV² • P'_4 is SM-like.

We include the most robust correlations:

 \rightarrow coming from large-recoil symmetries and correct for their breaking.

We tested the impact of including also "inner LCSR correlations" in BSZ for P'_5 .

 \rightarrow increases your sensitivity to LCSR hypothesis.

	$P_5'[4.0, 6.0]$	scheme 1 [CDHM]	
	1	-0.72 ± 0.05	
	2	-0.72 ± 0.03	
-	3	-0.72 ± 0.03	
	full BSZ	-0.72 ± 0.03	
erro	rs only from	pc with BSZ form fac	tors

[Capdevila, Descotes, Hofer, JM]

 $1 \quad \triangle F^{\rm PC} = F \times \mathcal{O}(\Lambda/m_B)$

correl. from large-recoil sym. $\rightarrow \xi_{\perp,\parallel}, \triangle F^{PC}$ unc. (minimal input from LCSR on correlations)

2 $\triangle F^{\text{PC}}$ from fit to LCSR

correl. from large-recoil sym. $\rightarrow \xi_{\perp,\parallel}, \triangle F^{PC}$ unc.

3 $\triangle F^{\text{PC}}$ from fully correlated fit to LCSR + **correl.** from LCSR between $\xi_{\perp,\parallel}, \triangle F^{\text{PC}}$ (maximal input from LCSR correlations)

Difference dominated by our conservative assumption $O(\Lambda/m_b) \times FF \sim 10\%$ while BSZ (~ 5%) \rightarrow including all or part of the inner correlations will impact on the size of conservative assumption

Unprotected observables like S_i much more sensitive to inner LCSR correlations than P_i .

Joaquim Matias