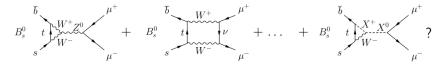
Rare Decays at LHCb

Miriam Lucio, on behalf of the LHCb Collaboration

LIO International Conference on Flavour Physics

Lyon, April 18, 2018



イロト イヨト イヨト イヨト

Rare decays: mediated by electroweak flavour-changing neutral current (FCNC) processes in the Standard Model (SM)

- SM: forbidden at tree level. Occurs via electroweak penguin or box diagrams ⇒ strongly suppressed
 - NP contributions could become apparent
- Beyond the Standard Model (BSM) Physics entering these decays ⇒ large deviations from SM predictions

- Complementary approach to direct searches
 - higher energy ranges than directly accessible can be probed (virtual particles)

イロト イポト イヨト イヨト

Introduction

Forbidden decays: if oberved, clear sign of New Physics

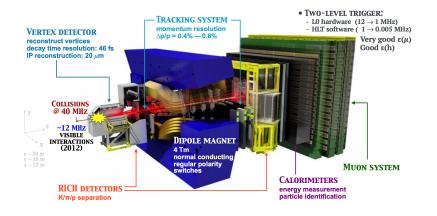
Covered today

★
$$\mathbf{B^0_s} \to \mathbf{I^+ I^{(')-}}$$
: $B^0_{(s)} \to \mu^+ \mu^-$, $B^0_{(s)} \to \tau^+ \tau^-$, $B^0_{(s)} \to e^\pm \mu^\mp$

$$\star$$
 $B^0 o K^{*0} \mu^+ \mu^-$, $B^0_s o ar K^{*0} \mu^+ \mu^-$

★ Rare charm, baryon and strange decays: $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$, $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$, $\Sigma^+ \rightarrow p \mu^+ \mu^-$, $K_S^0 \rightarrow \mu^+ \mu^-$

Covered in the next talk (Vinicius)


Lepton Flavour Universality tests:

- **Tree-level:** $R(J/\psi)$, $R(D^*)$ (semileptonic), $R(D^*)$ (hadronic)
- **★** Loop-level: R(K), $R(K^*)$
- ${\bf B}^+ \to {\bf K}^+ \mu^+ \mu^+$

<ロト < 団 > < 臣 > < 臣 >

LHCb [Int J Mod Phys A30 (2015) 1530022]

- Single-arm forward spectrometer, $2 < \eta < 5$
- General purpose experiment in the forward region, initially designed to study of *b* and *c*-hadrons

・ロト ・ 一ト ・ モト ・ モト

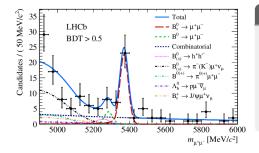
$B^0_{(s)} o \mu^+ \mu^-$ [PRL 118 (2017) 191801]

• Golden channel: very rare decay, helicity suppressed

- Within the SM only through loop diagrams [PRL 112 (2014) 10180]: $\mathcal{B}_{SM}(B_s^0 \to \mu^+\mu^-) = (3.65 \pm 0.23) \times 10^{-9},$ $\mathcal{B}_{SM}(B^0 \to \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10}$
- Previous measurement: LHCb and CMS combination, 2011 + 2012 data: [Nature 522 (2015) 68]

$$\mathcal{B}(B^0_s o \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) imes 10^{-9}, \ \mathcal{B}(B^0 o \mu^+ \mu^-) = (1.06^{+1.6}_{-1.4}) imes 10^{-10}$$

• Complementary measurement of **effective lifetime** can help disentangle B_s^0 and \bar{B}_s^0 contribution to the decay


$$\tau_{\mu^+\mu^-} = \frac{\tau_{B_s^0}}{1-y_s^2} \left[\frac{1+2A_{\Delta\Gamma}^{\mu^+\mu^-}y_s+y_s^2}{1+A_{\Delta\Gamma}^{\mu^+\mu^-}y_s} \right], \ y_s \equiv \tau_{B_s^0} \frac{\Delta\Gamma}{2}$$

 $A^{\mu^+\mu^-}_{\Delta\Gamma} = 1$ in the SM, [-1,1] in NP scenarios

ヘロト 人間ト 人目ト 人目下

$\overline{B^0_{(s)}} \to \mu^+ \mu^-$ [PRL 118 (2017) 191801]

Measurement of the time-integrated branching fractions

Optimisation

- Better rejection of misidentified b-hadron decays
- Improved isolation variables ⇒ Improved boosted decision tree (separate signal from combinatorial background)

イロト イポト イヨト イヨン

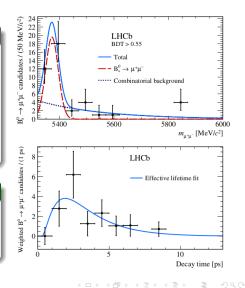
Run1 + part Run2 (2015 and 2016) data (4.4 ${ m fb}^{-1}$)

$$\begin{array}{l} \mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}, \ 7.8 \sigma \ \text{excess} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}, \ 95 \ \% \ \text{CL} \\ \text{Results compatible with SM} \end{array}$$

$B_s^0 o \mu^+ \mu^-$ [PRL 118 (2017) 191801]

Lifetime determination

Fit details


- Background-subtracted data
- Reduced $\mu^+\mu^-$ mass window
- Looser particle identification requirements for the muons
- Decay-time cut at 13.5 ps to remove bkg with $\tau >> \tau(B_s^0 \to \mu^+ \mu^-)$

• Fit to acceptance(t)*exp(t)

Results

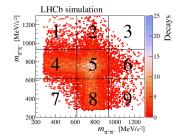
$$au(B_s^0 o \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \ {
m ps}$$

- Consistent with SM at 1.0σ
- Consistent with $A^{\mu^+\mu^-}_{\Delta\Gamma} = -1$ at 1.4 σ

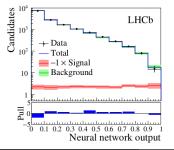
$\overline{B^0_{(s)}} o au^+ au^-$ [PRL 118 (2017) 251802]

- Complementary search to $B^0_{(s)} \rightarrow \mu^+ \mu^-$ (less helicity supressed), very interesting in view of the latest LFU results (see talk by Vinicius)
- $\mathcal{B}_{SM}(B^0_s \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ [PRL 112 (2014) 101801] $\mathcal{B}_{SM}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$ [PRL 112 (2014) 101801]
 - BSM Physics explaining latest LFU results could enhance these values by several orders of magnitude

Previous measurements


 $\begin{array}{l} \mathcal{B}(B^0 \to \tau^+ \tau^-) < 4 \times 10^{-3} \text{ at } 90\% \text{ CL (Babar, [PRL 96 (2006) 241802])} \\ \mathcal{B}(B^0_s \to \tau^+ \tau^-) < 3\% \text{ at } 90\% \text{ CL (indirect constraints, [PRD 82 (2010) 031502])} \end{array}$

au reconstruction [Phys. Rept. 421 (2005) 191]


- $\tau^- \to \pi^+ \pi^- \pi^+ \nu_\tau \ [\ \tau^- \to a_1(1260)^- \nu_\tau, a_1(1260)^- \to \rho(770)^0 \pi^-]$
- Final-state neutrinos $\rightarrow m_{\tau^+\tau^-}$ cannot be used to distinguish between B^0_s and B^0

$B^0_{(s)} o au^+ au^-$ [PRL 118 (2017) 251802]

- Exploit the $\rho(770)^0$ resonance
- Signal region: both τ in 5 (signal yield)
- Signal-depleted region: at least one τ in 1,3,7 or 9 (bkg when optimising the selection, first Neural-Network)
- **Control region:** one τ in 4,5 or 8, the other in 4 or 8 (bkg model)

Fit to a second Neural-Network:

Run1 data (3 fb^{-1})

$$\begin{array}{c} {\cal B}(B^0_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3}, \, 95\% \,\, {\rm CL} \\ ({\rm first \ direct \ limit}) \\ {\cal B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3}, \, 95 \,\, \% \,\, {\rm CL} \\ ({\rm world's \ best \ limit}) \end{array}$$

(*) assuming no crossed-contributions

$\overline{B^0_{(s)} o e^\pm \mu^\mp}$ [JHEP 1803 (2018) 078]

- \bullet Lepton-Flavour Violating decay, forbidden in the SM \rightarrow sensitive to new mediators
 - Not present in the SM, allowed in nature (at least) through neutrino mixing [PRL 81 (1998) 1562]
- Large LFV expected in numerous NP scenarios (e.g. leptoquarks, supersymmetric models) $\rightarrow \mathcal{B}(B^0 \rightarrow e^{\pm}\mu^{\mp}), \ \mathcal{B}(B^0_s \rightarrow e^{\pm}\mu^{\mp})$ enhancement [PRD 92 (2015) 054013], [PRD 94 (2016) 115021], [JHEP 06 (2015) 072]

Previous measurements: LHCb 1fb^{-1} (PRL 111 (2013) 141801)

$${\cal B}(B^0 o e^\pm \mu^\mp) < 3.7 imes 10^{-9}, {\cal B}(B^0_s o e^\pm \mu^\mp) < 1.4 imes 10^{-8}$$
 at 95% CL

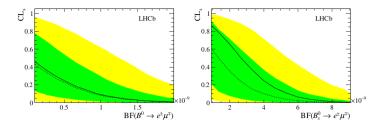
Improvements

- Larger data sample
- Improved selection (multivariate classifier)

Categories:

- No bremsstrahlung γ associated with the e^{\pm}

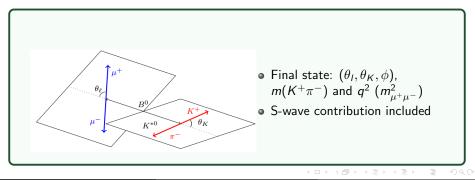
$\overline{B^0_{(s)} o e^\pm \mu^\mp}$ [JHEP 1803 (2018) 078]


Unbinned maximum likelihood fit to the $m_{e^{\pm}\mu^{\mp}}$ distributions:

- 7 bins of BDT (uniform) response \in [0.25,1.0]
 - Signal: simulated $B_s^0
 ightarrow e^\pm \mu^\mp$, Background: data with $e^\pm \mu^\pm$

Run1 data (3 fb^{-1})

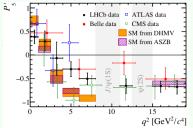
$${\cal B}(B^0_s o e^\pm\mu^\mp)<$$
 5.4(6.3) $imes$ 10⁻⁹, 95% CL (*)
 ${\cal B}(B^0 o e^\pm\mu^\mp)<$ 1.0(1.3) $imes$ 10⁻⁹, 95 % CL


(*) assuming only contribution from heavy mass eigenstate

Strongest limits on these decays consistent with background-only hypothesis

$B^0 o K^{*0} \mu^+ \mu^-$ [JHEP 02 (2016) 104]

- $\bullet \ b \rightarrow s$ Flavour-Changing Neutral Current transition
- Measurement of CP-averaged angular observables and CP-asymmetries (full angular distribution)
 - Angular observables: less affected by hadronic uncertainties (B⁰ → K^{*0})
- Previous measurements by LHCb [PRL 111 (2013) 191801], Babar [PRD 73 (2006) 092001], Belle [PRL 103 (2009) 171801], CDF [PRL 108 (2012) 081807], CMS [PRB 727 (2013) 77]

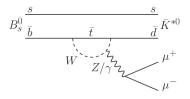

$B^0 o K^{*0} \mu^+ \mu^-$ [JHEP 02 (2016) 104]

Usage of **optimised** obervables (cancellation of leading form-factor uncertainties), $P_i^{(')}$ [arXiv:1207.2753]:

$$P_{5}^{'} = rac{S_{5}}{\sqrt{F_{L}(1-F_{L})}}$$

Run1 data (3 fb^{-1})

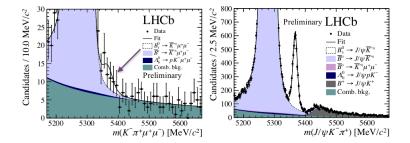
Tension with SM prediction [JHEP 1412 (2014) 125], [Eur. Phys. J. C75 (2015) 382] in two bins of $P_5^{'}$


Combined significance of 3.4σ :

- BSM physics (see upcoming talks)
- Underestimated QCD uncertainties (see upcoming talks)

Correlations between observables are computed \Rightarrow possibility of performing global fits to theoretical models

$B^0_s ightarrow ar{K}^{*0} \mu^+ \mu^-$ [LHCb-PAPER-2018-004]


- b
 ightarrow d Flavour-Changing Neutral Current transition
- Never observed, $\mathcal{B}_{SM}(B^0_s \to \bar{K}^{*0}\mu^+\mu^-) \sim \mathcal{O}(10^{-8})$ (CKM suppressed) [JHEP 08 (2016) 098], [PoS LATTICE2014 (2015) 372]
- Complementary to $B^0 o K^{*0} \mu^+ \mu^-$. Can be used to compute $|V_{td}/V_{ts}|$

Unbinned maximum likelihood fit to $m(K^-\pi^+\mu^+\mu^-)$ • $m(K^-\pi^+)$ within \pm 70 MeV/c²of the $\bar{K}^*(892)^0$ • $0.1 < q^2 = m_{\mu^+\mu^-}^2 < 19.0 \text{GeV}^2/\text{c}^4$ • $12.5 < q^2 < 15.0 \text{GeV}^2/\text{c}^4$ excluded ($\psi(2S)$ resonance) • $8.0 < q^2 < 11.0 \text{GeV}^2/\text{c}^4$ treated separately (J/ψ resonance)

$B^0_s ightarrow ar{K}^{*0} \mu^+ \mu^-$ [LHCb-PAPER-2018-004]

Run1 + part Run2 (2015 and 2016) data (4.6 fb⁻¹)

April 18, 2018

$D^0 o h^+ h^- \mu^+ \mu^-$ [PRL 119 (2017) 181805]

$c ightarrow u \mu^+ \mu^-$ FCNC proccess (GIM suppressed)

- Short-distance (SD) contributions: $\mathcal{B}_{SM}(D^0 \rightarrow h^+ h^- \mu^+ \mu^-) \sim \mathcal{O}(10^{-9})$ [PRD 83 (2011) 114006]
- Long-distance (LD) contributions: $\mathcal{B}_{SM}(D^0 \to h^+ h^- \mu^+ \mu^-) \sim \mathcal{O}(10^{-6})$ [PRD 76 (2007) 074010] [JHEP 04 (2013) 135]

イロト イヨト イヨト イヨト

4 body-decay \Rightarrow access to a variety of angular distributions \Rightarrow disentangle LD and SD

Previous measurements: LHCb
$$1fb^{-1}$$
 (PLB 728 (2014) 234))

$$\mathcal{B}(D^0
ightarrow \pi^+ \pi^- \mu^+ \mu^-) < 5.5 imes 10^{-7}$$
 at 90% CL

• $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$, h= π , K, $D^{*+} \rightarrow D^0 \pi + (D^{*+}$ produced directly at PV)

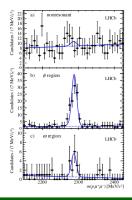
$D^0 ightarrow h^+ h^- \mu^+ \mu^-$ [PRL 119 (2017) 181805]

Run1 data (2 fb^{-1} ; 8 TeV)

Low-m(u+u) LHCb $m_{\mu^+\mu^-}$ mass regions: andidates per 5 MeV/c (low-mass) $< 525 \text{ MeV/c}^2$ (η) 525 – 565 MeV/c² (ρ^0/ω) 565 – 950 MeV/c² (ϕ) 950 – 1100 MeV/c² - Data High-m(µ+µ (high-mass) $< 525 \text{ MeV/c}^2$ 1850 1900 $m(D^0)$ [MeV/ c^2] $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = [9.64 \pm 0.48(\text{stat}) \pm 0.51(\text{syst}) \pm 0.97(\text{norm})] \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = [1.54 \pm 0.27 (\text{stat}) \pm 0.09 (\text{syst}) \pm 0.16 (\text{norm})] \times 10^{-7}$ (*) integrating over dimuon mass

Rarest charm-hadron decays ever observed, consistent with the SM

$\Lambda_c^+ ightarrow p \mu^+ \mu^-$ [arXiv:1712.07938]


GIM-suppressed FCNC proccess

 $\mathcal{B}_{SM}(\Lambda_c^+ \to p \mu^+ \mu^-) \sim \mathcal{O}(10^{-9}) \text{ (SD)}, \mathcal{O}(10^{-6}) \text{ (LD)}$ [PRD 73 (2006) 054026], [PRD 66 (2002) 014009]

BaBar (PRD 84 (2011) 072006)

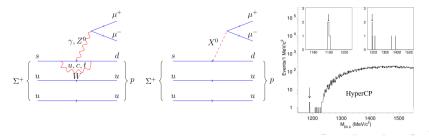
$${\cal B}(\Lambda_c^+ o p \mu^+ \mu^-) < 4.4 imes 10^{-5}$$
 at 90% CL

 $\mathbf{m}_{\mu^+\mu^-}$ mass regions: a) non-resonant, b) ϕ (normalization), c) ω

Run1 data (3 fb^{-1})

•	Excess seen at ϕ and ω (5.0 σ , first observation):
	$\mathcal{B}(\Lambda_c^+ ightarrow p\omega) = [964 \pm 3.2(\mathrm{stat}) \pm 1.0(\mathrm{syst}) \pm 2.0(\mathrm{norm})] imes 10^{-4})$
•	$\mathcal{B}(\Lambda_c^+\to\rho\mu^+\mu^-)<7.7(9.6)\times10^{-8}$ at 90% (95 %) CL \leftarrow 10^2 improvement

$\Sigma^+ ightarrow p \mu^+ \mu^-$ [arXiv:1712.08606]

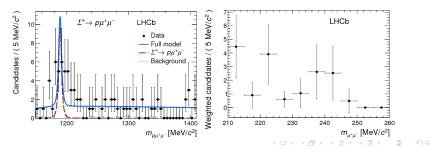

• $s \rightarrow d$ process, $1.6 \times 10^{-8} < B_{SM}(\Sigma^+ \rightarrow p\mu^+\mu^-) < 9.0 \times 10^{-8}$ dominated by LD contributions [PRD 72 (2005) 074003]

• Hyperons are copiously produced at LHC

First evidence: HyperCP (PRL 94 (2005) 021801)

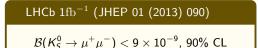
•
$$\mathcal{B}(\Sigma^+ o p \mu^+ \mu^-) = (8.6^{+6.6}_{-5.4}) imes 10^{-8}$$

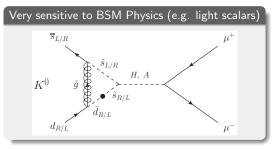
• 3 observed signal events with almost the same $m_{\mu^+\mu^-} \Rightarrow$ possibility of a BSM intermediate resonance $\Sigma^+ \rightarrow p X^0 (\rightarrow \mu \mu)$

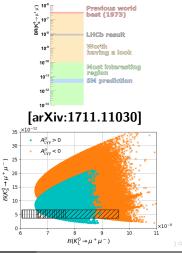


$\Sigma^+ ightarrow ho \mu^+ \mu^-$ [arXiv:1712.08606]

- Relatively low p_T of the final-state particles
- $|m_{\rho\mu^+\mu^-} m_{\Sigma^+}| < 500 \text{ MeV/c}^2$
- Strategy optimized to search for a dimuon resonance

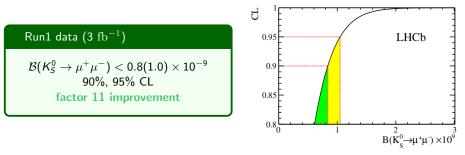

Run1 data (3 fb^{-1})


- Excess of events observed, 4σ significance: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.1^{+1.6}_{-1.2}) \times 10^{-8}) \leftarrow \text{consistent}$ with the SM
- No significant structure in the dimuon invariant mass distribution



$K_S^0 \to \mu^+ \mu^-$ [Eur. Phys. J. C77 10 (2017) 678]

$$\begin{split} \mathcal{B}_{SM}(K^0_S \to \mu^+ \mu^-) &= (5.0 \pm 1.5) \times 10^{-12} \text{ (LD dominated)} \\ & \text{[Nucl. Phys. B366 (1991) 189], [JHEP 01 (2004) 009]} \end{split}$$



$K_S^0 \to \mu^+ \mu^-$ [Eur. Phys. J. C77 10 (2017) 678]

- $\mathcal{O}(10^{13})$ of K^0_S per fb^{-1} within the LHCb acceptance
- Main limitation is the low trigger efficiency
 - no mass requirements, lower p_T threshold \Rightarrow factor 2.5 improvement wrt previous measurement
- 2 multivariate discriminants to remove background (combinatorial and from $\rm K^0_S \to \pi^+\pi^-)$

• Good prospects to enter the most interesting region in the future

A lot of activity in rare decays @ LHCb :

- $B_s^0 \to \mu^+ \mu^-$: first observation in a single experiment + first measurement of the effective lifetime
- Improved(set) upper limits for $B^0_{(s)} \to \tau^+ \tau^-$, $B^0_{(s)} \to e^{\pm} \mu^{\mp}$, $K^0_S \to \mu^+ \mu^-$
- $B^0 \to K^{*0} \mu^+ \mu^-$: tension with SM persists
- First evidence of $B^0_s o ar{K}^{*0} \mu^+ \mu^-$
- $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$: rarest charm-hadron decay observed
- First observation of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ in the ω region
- Evidence of $\Sigma^+ o p \mu^+ \mu^-$, no resonance found in $m_{\mu^+ \mu^-}$

Important constraints on New Physics

イロト イポト イヨト イヨト

Thanks for your attention!

M. Lucio

イロト イポト イヨト イヨト