

Quantum simulations for dipolar spin systems in optical lattices

Lucas Gabardos (PhD), Steven Lepoutre (post doc – now MCF Orsay), Bruno Laburthe-Tolra , Laurent Vernac (Laboratoire de Physique des Lasers, Villetaneuse)

Bihui Zhu (ITAMP, Harvard-Smithsonian Center for Astrophysics) Johannes Schachenmayer (CNRS Strasbourg), Ana Maria Rey (JILA, Colorado)

> Petra Fersterer, P. Blair Blakie (University of Otago) Arghavan Safavi-Naini, A.M. Rey (JILA, Colorado)

> > Tommaso Roscilde (ENS Lyon)

Chromium atom: a dipolar species

$$\hat{H}_{dd} \propto S_{1z}S_{2z} - \frac{1}{4} (S_{1+}S_{2-} + S_{1-}S_{2+})$$

Exchange

In lattice with one atom per site spin dynamics is purely dipolar

dipolar atomic systems: Stuttgart (Dy), Innsbruck (Er), Stanford (Dy), Paris (Dy), Harvard (Er),...

Quantum Magnetism in 3D lattices: preparation

Rectangular lattice of anisotropic sites

deep 3D lattice \rightarrow strong correlations, Mott transition

One atom per site ensures pure dipolar interactions at high lattice depth

Shallow 3D lattice \rightarrow superfluid state

Competition between dipolar interactions, tunneling and tunneling assisted superexchange

Outline

Out of equilibrium spin dynamics

Towards (?) adiabatic production of the ground state of a transverse Hamiltonian

Out of equilibrium dynamics: Principle of the experiments

Out of equilibrium dynamics characterized by the change of the populations of the Zeeman components

Spin dynamics in lattice: comparison with simulations

10000 atoms!

NO exact simulation available beyond 15 atoms: problem with border effects!

Mean field simulations

Quantum simulations (Generalized Dichotomized Truncated Wigner Approximation) developed by J. Schachenmayer

Short time exact results: $\hat{H} = \sum_{i>j}^{N} V_{ij} \left[\hat{S}_i^z \hat{S}_j^z - \frac{1}{2} \left(\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y \right) \right]$ $p_{m_S}(t) = p_{m_S}(0) + \sin[\theta]^4 \alpha_{m_S}(\theta) t^2 V_{\text{eff}}^2 \qquad V_{\text{eff}} \equiv \sqrt{\sum_{i,j\neq i}^{N} V_{ij}^2/N}$

Spin dynamics in lattice: comparison with simulations

The quantum simulations agree well with data: a very good test for GDTWA for large atom numbers

Lepoutre et al, Nature Com (2019)

 $\boldsymbol{J}_{\boldsymbol{z}}$

 \wedge

Jy

Spin dynamics in lattice: Quantum Thermalization

1- Our data show that spin dynamics stops in about 60-80 ms

in agreement with quantum simulations (solid lines)

while mean field simulations show revivals at this time scale (dashed lines)

2- Asymptotic experimental populations are close to population distributions maximizing entropy at fixed magnetization

A long-range interacting many particle isolated system which internally thermalizes through entanglement build-up, and develops an effective thermal-like behavior through a mechanism which is purely quantum and conservative

3- A more elaborated model includes the one body physics quadratic energy term

$$E(m_s) = B_Q m_s^2$$

$$\hat{\rho} = \exp[-\beta \hat{H}] \approx Id - \beta \hat{H}$$

$$P_{m_s} = \frac{1}{7} \left(1 + \beta B_Q (4 - m_s^2) \right)$$

Quantum Thermalization at a few nK

Lepoutre et al, Nature Com (2019)

Other experiments:	Greiner: few 1/2 spins, superexchange processes
	B. Lev: Dy atoms, thermalization through collisions

Adiabatic production of the ground state of an Hamiltonian: principle

Adiabatic production of the ground state of an Hamiltonian: results (preliminary!)

thank you for your attention!

We are looking for a post doc!