Momentum-space atom correlations in a Mott insulator

David CLEMENT

Institut d'Optique - Palaiseau, France

Congrès général de la SFP 2019

A small detour in quantum optics: HBT experiment

A small detour in quantum optics: HBT experiment

Correlation at zero distance equals 2: $\quad g^{(2)}(d=0)=2$

Correlation length l_{c} provides measure of the angular diameter α of the star:

$$
l_{c} \propto \lambda / \alpha
$$

The HBT stellar interferometer: a classical explanation

A star is an incoherent source of light: modelled by many random emitters

The detected field is sum of many independent random variables:

$$
\mathcal{E}\left(P_{1}, t\right)=\sum_{\text {star }} a_{j} \mathrm{e}^{i\left[\phi_{j}-\omega_{j} t-k \cdot r_{j}\right]}
$$

```
Central limit theorem: \mathcal{E}(\mp@subsup{P}{1}{},t)
is a Gaussian random variable
```

$$
g^{(2)}(d)=1+\left|g^{(1)}(d)\right|^{2}
$$

The HBT stellar interferometer: a classical explanation

A star is an incoherent source of light: modelled by many random emitters

The detected field is sum of many independent random variables:

$$
\mathcal{E}\left(P_{1}, t\right)=\sum_{\text {star }} a_{j} \mathrm{e}^{i\left[\phi_{j}-\omega_{j} t-k \cdot r_{j}\right]}
$$

distribution of the incoherent emitters: diameter of the star
(identical to Michelson interferometry)

The HBT stellar interferometer: a quantum explanation

A star is an incoherent source of light: modelled by many random emitters

The detected field is sum of many independent random variables:

Thermal light = many modes of ideal bosons (photons) populated:

$$
H=\sum_{k} N(k) \hbar \omega(k) a(k)^{\dagger} a(k)
$$

Described by a Gaussian density operator

$$
\mathcal{E}\left(P_{1}, t\right)=\sum_{\text {star }} a_{j} \mathrm{e}^{i\left[\phi_{j}-\omega_{j} t-k \cdot r_{j}\right]}
$$

Wick theorem applies:

$$
\begin{gathered}
\left\langle a_{1}^{\dagger} a_{2}^{\dagger} a_{3} a_{4}\right\rangle=\left\langle a_{1}^{\dagger} a_{3}\right\rangle\left\langle a_{2}^{\dagger} a_{4}\right\rangle+\left\langle a_{1}^{\dagger} a_{4}\right\rangle\left\langle a_{2}^{\dagger} a_{3}\right\rangle \\
\downarrow \\
g^{(2)}(d)=1+\left|g^{(1)}(d)\right|^{2}
\end{gathered}
$$

Constructive interferences: quantum statistics of ideal bosons!
$g^{(2)}(d=0)=2 \quad\left\langle\mathcal{E}\left(P_{1}, t\right) \mathcal{E}\left(P_{2}, t\right)\right\rangle \simeq \sum_{\text {star }}\left\langle a_{j}^{*} a_{j}\right\rangle \mathrm{e}^{i\left(k-k^{\prime}\right) \cdot r_{j}}$
distribution of the incoherent emitters:
diameter of the star
(identical to Michelson interferometry)

The HBT stellar interferometer: a quantum explanation

A star is an incoherent source of light: modelled by many random emitters

The detected field is sum of many independent random variables:

$$
\mathcal{E}\left(P_{1}, t\right)=\sum_{\text {star }} a_{j} \mathrm{e}^{i\left[\phi_{j}-\omega_{j} t-k \cdot r_{j}\right]}
$$

Thermal light = many modes of ideal bosons (photons) populated:

$$
H=\sum_{k} N(k) \hbar \omega(k) a(k)^{\dagger} a(k)
$$

Described by a Gaussian density operator

Wick theorem applies:

Central limit theorem: $\mathcal{E}\left(P_{1}, t\right)$ is a Gaussian random variable

$$
g^{(2)}(d)=1+\left|g^{(1)}(d)\right|^{2}
$$

$$
\begin{gathered}
\left\langle a_{1}^{\dagger} a_{2}^{\dagger} a_{3} a_{4}\right\rangle=\left\langle a_{1}^{\dagger} a_{3}\right\rangle\left\langle a_{2}^{\dagger} a_{4}\right\rangle+\left\langle a_{1}^{\dagger} a_{4}\right\rangle\left\langle a_{2}^{\dagger} a_{3}\right\rangle \\
\downarrow \\
g^{(2)}(d)=1+\left|g^{(1)}(d)\right|^{2}
\end{gathered}
$$

Constructive interferences: quantum statistics of ideal bosons!

Characteristics of HBT experiments with

 incoherent source of non-interacting bosons:$\longrightarrow g^{(2)}(d=0)=2$: source with Gaussian statistics
\longrightarrow Shape of $g^{(2)}(d)$ is set by the spatial distribution of the incoherent emitters

Correlations in a Mott insulator deep in the insulating regime

Bosons loaded in the lowest band of a lattice described by the Bose-Hubbard Hamiltonian:

$$
H=-J \sum_{j, j^{\prime}} b_{j}^{\dagger} b_{j^{\prime}}+\frac{U}{2} \sum_{j} n_{j}\left(n_{j}-1\right)
$$

Correlations in a Mott insulator deep in the insulating regime

Bosons loaded in the lowest band of a lattice described by the Bose-Hubbard Hamiltonian:

$$
H=-J \sum_{j, j^{\prime}} b_{j}^{\dagger} b_{j^{\prime}}+\frac{U}{2} \sum_{j} n_{j}\left(n_{j}-1\right)
$$

In the regime $U \gg J$ the atoms are pinned in the lattice site with unity occupation: Mott insulator

Deep in the Mott regime:

- negligible fluctuations of atom number per lattice site
- negligible site-to-site phase coherence

Interaction term is negligible: $H \simeq \sum_{k} \epsilon(k) a^{\dagger}(k) a(k)$
Similar to ideal bosons with no coherence!

Detection of lattice gases with the Helium detector

Adiabatic loading of Bose-Einstein Condensate into a 3D square optical lattice (wave-length 1550 nm)

Bose-Einstein condensates of metastable Helium-4

Phys. Rev. A 90063407 (2014)
Phys. Rev. A 91061402 (R) (2015)

Detection of lattice gases with the Helium detector

Adiabatic loading of Bose-Einstein Condensate into a 3D square optical lattice (wave-length 1550 nm)

3D distribution of single atoms

Phys. Rev. A 97 061609(R) (2018)

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless
(due to absence of phase coherence)

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless

(due to absence of phase coherence)

$$
g^{(2)}\left(\vec{k}, \overrightarrow{k^{\prime}}\right)=\frac{\left\langle a^{\dagger}(\vec{k}) a^{\dagger}\left(\overrightarrow{k^{\prime}}\right) a(\vec{k}) a\left(\overrightarrow{k^{\prime}}\right)\right\rangle}{\rho(\vec{k}) \rho\left(\overrightarrow{k^{\prime}}\right)}
$$

1D cuts along a given axis: $\vec{k}-\overrightarrow{k^{\prime}}=\delta k \cdot \vec{u}$
perfectly contrasted bosonic bunching

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless

(due to absence of phase coherence)

$$
g^{(2)}\left(\vec{k}, \overrightarrow{k^{\prime}}\right)=\frac{\left\langle a^{\dagger}(\vec{k}) a^{\dagger}\left(\overrightarrow{k^{\prime}}\right) a(\vec{k}) a\left(\overrightarrow{k^{\prime}}\right)\right\rangle}{\rho(\vec{k}) \rho\left(\overrightarrow{k^{\prime}}\right)}
$$

1D cuts along a given axis: $\vec{k}-\overrightarrow{k^{\prime}}=\delta k \cdot \vec{u}$
perfectly contrasted bosonic bunching

Pioneering experiment using noise correlation on atomic densities:

Bunching observed in the expanded density!

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless

(due to absence of phase coherence)

Two-body correlations in momentum-space:

Two-body correlation length

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless

(due to absence of phase coherence)

Two-body correlations in momentum-space:

Two-body correlation length

Excellent agreement with no adjustable parameters!
(incompressible Mott state)

dashed line: Gutzwiller solution for the experiment (3D Mott state and $\left\langle n_{j}\right\rangle=1$)

Two-body correlations deep in the Mott regime

Mott insulator with $U / J=100$

Momentum density is featureless
(due to absence of phase coherence)

From recorded full distribution of atoms in 3D, we can extract higher-order correlations:

Three-body correlations

Momentum-space correlations deep in the Mott regime are that of a Gaussian many-body ground-state

Depletion of strongly-interacting condensate

Momentum distribution of lattice condensates:
Depletion of condensate

A single quantum state: no bunching

$$
U / J=10
$$ for the depletion of strongly interacting condensates ($\mathrm{U}>\mathrm{T}$)

Condensate

Density operator non Gaussian

Conclusion

Single-atom detection of lattice gases in 3D momentum space
H. Cayla et al., Phys. Rev. A 97 061609(R) (2018)

Many-body correlations in the deep Mott regime

C. Carcy et al., arXiv:1904.10995 (2019)

Non-Gaussian correlations in interacting depleted bosons

Quantum-Monte Carlo:

G. Carleo (Flatiron Institute, New York)

T. Roscilde (ENS Lyon)

M. Mancini
C. Carcy H. Cayla

A. Tenart

A. Aspect

