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A	small	detour	in	quantum	optics:	HBT	experiment	
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R.	Hanbury-Brown	and	R.	Q.	Twiss:	correlations	in	the	light	intensity
Nature	177,	27-29	(1956)
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Correlation	at	zero	distance	equals	2:	 g(2)(d = 0) = 2

g(2)(d)� 1
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Correlation	length						provides	measure	
of	the	angular	diameter						of	the	star:	
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The	HBT	stellar	interferometer:	a	classical	explanation

A	star	is	an	incoherent	source	of	light:	
modelled	by	many	random	emitters

The	detected	field	is	sum	of	many	
independent	random	variables:

Central	limit	theorem:																
is	a	Gaussian	random	variable	

E(P1, t)

E(P1, t) =
X

star

aj ei[�j�!jt�k.rj ]
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g(2)(d) = 1+ | g(1)(d) |2
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(identical	to	Michelson	interferometry)
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The	HBT	stellar	interferometer:	a	quantum	explanation

A	star	is	an	incoherent	source	of	light:	
modelled	by	many	random	emitters

The	detected	field	is	sum	of	many	
independent	random	variables:

Central	limit	theorem:																
is	a	Gaussian	random	variable	

E(P1, t)
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X
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g(2)(d = 0) = 2 hE(P1, t)E(P2, t)i '
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†
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Thermal	light	=	many	modes	of	ideal	bosons	
(photons)	populated:	
		
		

Described	by	a	Gaussian	density	operator

g(2)(d) = 1+ | g(1)(d) |2

H =
X

k

N(k)~!(k) a(k)†a(k)

Wick	theorem	applies:
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Constructive	interferences:	quantum	
statistics	of	ideal	bosons!

distribution	of	the	incoherent	emitters:	
diameter	of	the	star	
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Constructive	interferences:	quantum	
statistics	of	ideal	bosons!

g(2)(d = 0) = 2																													:	source	with	Gaussian	statistics

Shape	of																is	set	by	the	spatial	distribution	of	the	incoherent	emittersg(2)(d)� 1

Characteristics	of	HBT	experiments	with	
incoherent	source	of	non-interacting	bosons:

Thermal	light	=	many	modes	of	ideal	bosons	
(photons)	populated:	
		
		

Described	by	a	Gaussian	density	operator

Wick	theorem	applies:
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Correlations	in	a	Mott	insulator	deep	in	the	insulating	regime
Bosons	loaded	in	the	lowest	band	of	a	lattice	described	by	the	Bose-Hubbard	Hamiltonian:
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Correlations	in	a	Mott	insulator	deep	in	the	insulating	regime
Bosons	loaded	in	the	lowest	band	of	a	lattice	described	by	the	Bose-Hubbard	Hamiltonian:

In	the	regime																the	atoms	are	pinned	in	the	lattice	site	with	unity	occupation:	Mott	insulatorU � J

Deep	in	the	Mott	regime:		
- negligible	fluctuations	of	atom	number	per	lattice	site	
- negligible	site-to-site	phase	coherence

Interaction	term	is	negligible: H '
X

k

✏(k)a†(k)a(k)

Similar	to	ideal	bosons	with	no	coherence!
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Detection	of	lattice	gases	with	the	Helium	detector

3	pairs	of	counter-propagaWng	laser	
beams	forming		standing	waves

AdiabaWc	loading	of	Bose-Einstein	Condensate	into	
a	3D	square	opWcal	laYce	(wave-length	1550	nm)

Phys.	Rev.	A	90	063407	(2014)	
Phys.	Rev.	A	91	061402(R)	(2015)

Bose-Einstein	condensates	
of	metastable	Helium-4	



Detection	of	lattice	gases	with	the	Helium	detector
AdiabaWc	loading	of	Bose-Einstein	Condensate	into	
a	3D	square	opWcal	laYce	(wave-length	1550	nm)

3	pairs	of	counter-propagaWng	laser	
beams	forming		standing	waves

Bose-Einstein	condensate	when	
released	from	a	3D	laLce	

Phys.	Rev.	A	97	061609(R)	(2018)

3D	distribution	of	single	atoms

4
He

⇤



Two-body correlations deep in the Mott regime
Mott	insulator	with	 U/J = 100

Momentum	density	is	featureless	
(due	to	absence	of	phase	coherence)
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Two-body	correlations	in	momentum-space: g(2)(~k, ~k0) =
ha†(~k)a†(~k0)a(~k)a(~k0)i
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1D	cuts	along	a	given	axis:	

perfectly	contrasted	bosonic	bunching

~k � ~k0 = �k.~u
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1D	cuts	along	a	given	axis:	

perfectly	contrasted	bosonic	bunching

~k � ~k0 = �k.~u

Pioneering	experiment	using	noise	
correlation	on	atomic	densities:

Nature	434,	481	(2005)

Bunching	observed	in	
the	expanded	density!



Two-body correlations deep in the Mott regime
Mott	insulator	with	 U/J = 100

Momentum	density	is	featureless	
(due	to	absence	of	phase	coherence)

Two-body	correlations	in	momentum-space:
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Two-body correlations deep in the Mott regime
Mott	insulator	with	 U/J = 100
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Two-body	correlations	in	momentum-space:
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dashed	line:	Gutzwiller	solution	for	the	
experiment	(3D	Mott	state	and																)		hnji = 1

lc/ 1/L

in-trap	size L

Excellent	agreement	with	
no	adjustable	parameters!	

(incompressible	Mo_	state)



Two-body correlations deep in the Mott regime
Mott	insulator	with	 U/J = 100

Momentum	density	is	featureless	
(due	to	absence	of	phase	coherence)

Two-body	correlations	in	momentum-space:
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regime	are	that	of	a	Gaussian	many-body	ground-state

From	recorded	full	distribution	of	atoms	in	
3D,	we	can	extract	higher-order	correlations:
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Depletion	of	strongly-interacting	condensate

Momentum	distribution	of	lattice	condensates:
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A	single	quantum	state:	
no	bunching

Depletion	of	condensate
Condensate

Bosonic	bunching

U/J = 10

numerics	using	Wick	theorem	
for	ideal	thermal	bosons

numerics	using	Wick	theorem	
for	in-trap	QMC	profiles

Density	operator	non	Gaussian	
for	the	depletion	of	strongly	
interacting	condensates	(U>T)

Tc



Conclusion
Single-atom detection of lattice 
gases in 3D momentum space

H.	Cayla	et	al.,	Phys.	Rev.	A	97	061609(R)	(2018)
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Many-body correlations in the deep Mott regime

C.	Carcy	et	al.,	arXiv:1904.10995	(2019)

Non-Gaussian correlations in interacting depleted bosons

A.	Aspect

Quantum-Monte	Carlo:

G.	Carleo		
(Flatiron	Institute,			

New	York)

T.	Roscilde	
	(ENS	Lyon)

C.	Carcy H.	CaylaM.	Mancini

A.	Tenart
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