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Momentum-space atom correlations
in a Mott insulator
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A small detour in guantum optics: HBT experiment

ig R. Hanbury-Brown and R. Q. Twiss: correlations in the light intensity
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Correlation at zero distance equals 2: 9(2) (d=0)=2

Correlation length [. provides measure
of the angular diameter o of the star:



The HBT stellar interferometer: a classical explanation

A star is an incoherent source of light: ik
modelled by many random emitters

The detected field is sum of many
independent random variables:

P17 Za ez[qu wit—k.r;]

star

Central limit theorem: £( P, t)
is @ Gaussian random variable
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star

distribution of the incoherent emitters:
diameter of the star

(identical to Michelson interferometry)



The HBT stellar interferometer: a quantum explanation

modelled by many random emitters (photons) populated:

A star is an incoherent source of light: i ? l Vnzrmiel| [t = many meees of (deel besomns

H =Y N(k)hw(k) a(k) a(k)
k

The detected field is sum of many
independent random variables:

f)17 Za ez[qu wit—k.r;]

(Described by a Gaussian density operator)

star Wick theorem applies:
Central limit theorem: £( P, t) (alalasas) = (alas)(abas) + (alas)(alas)
is a Gaussian random variable
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Constructive interferences: quantum
/ statistics of ideal bosons!
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The HBT stellar interferometer: a quantum explanation

A star is an incoherent source of light: ik Th:r;nal |)'8ht = {ntarle modes of ideal bosons
modelled by many random emitters (photons) populated:

H =Y N(k)hw(k) a(k) a(k)
k

The detected field is sum of many
independent random variables:
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(Described by a Gaussian density operator)

star Wick theorem applies:
Central limit theorem: £( P, t) (alalasas) = (alas)(abas) + (alas)(alas)
is a Gaussian random variable
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Constructive interferences: quantum
statistics of ideal bosons!

Characteristics of HBT experiments with
incoherent source of non-interacting bosons:

— 9(2)(d = () = 2: source with Gaussian statistics

—— Shape of g(2) (d) is set by the spatial distribution of the incoherent emitters



Correlations in a Mott insulator deep in the insulating regime

Bosons loaded in the lowest band of a lattice described by the Bose-Hubbard Hamiltonian:

interaction

H — —JZb;r-bj/ —I—%an(nj — 1)
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Correlations in a Mott insulator deep in the insulating regime

Bosons loaded in the lowest band of a lattice described by the Bose-Hubbard Hamiltonian:

interaction

Deep in the Mott regime:
- negligible fluctuations of atom number per lattice site
- negligible site-to-site phase coherence

[ > Interaction term is negligible: H ~ Z e(k)a' (k)a(k)
k

Similar to ideal bosons with no coherence!



Detection of lattice gases with the Helium detector

Adiabatic loading of Bose-Einstein Condensate into

a 3D square optical lattice (wave-length 1550 nm)

3 pairs of counter-propagating laser
beams forming standing waves

Bose-Einstein condensates

of metastable Helium-4
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Phys. Rev. A 90 063407 (2014)
Phys. Rev. A 91 061402(R) (2015)



Detection of lattice gases with the Helium detector

Adiabatic loading of Bose-Einstein Condensate into
a 3D square optical lattice (wave-length 1550 nm)

3D distribution of single atoms

3 pairs of counter-propagating laser
beams forming standing waves

Bose-Einstein condensate when
released from a 3D lattice

Phys. Rev. A 97 061609(R) (2018)



Two-body correlations deep in the Mott regime

Mott insulator with U/.J = 100

Momentum density is featureless
(due to absence of phase coherence)

UnJ=100
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Two-body correlations in momentum-space: 9(2)(72, ') =
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1D cuts along a given axis: k — k' = ok.u

perfectly contrasted bosonic bunching




Two-body correlations deep in the Mott regime

UnJ=100

Two-body correlations in momentum-space: 9(2)(72, ') =

Mott insulator with U/.J = 100

Momentum density is featureless
(due to absence of phase coherence)

Pioneering experiment using noise
correlation on atomic densities:
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1D cuts along a given axis: k — k' = ok.u

—

perfectly contrasted bosonic bunching

Bunching observed in
the expanded density!



Two-body correlations deep in the Mott regime

Mott insulator with U/.J = 100

Momentum density is featureless
(due to absence of phase coherence)

UnJ=100

Two-body correlations in momentum-space:
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Two-body correlation length



Two-body correlations deep in the Mott regime

Mott insulator with U/.J = 100

UnJ=100

Two-body correlations in momentum-space:
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5k [ka]

Two-body correlation length

Excellent agreement with
no adjustable parameters!

(incompressible Mott state)

Momentum density is featureless
(due to absence of phase coherence)

in-trap size L
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dashed line: Gutzwiller solution for the
experiment (3D Mott state and (n,;) = 1)



Two-body correlations deep in the Mott regime

Mott insulator with U/.J = 100

Momentum density is featureless

(due to absence of phase coherence) From recorded full distribution of atoms in
3D, we can extract higher-order correlations:

UnJ=100

Three-body correlations

Two-body correlations in momentum-space:
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Depletion of strongly-interacting condensate

Momentum distribution of lattice condensates:

Condensate
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A single quantum state:
no bunching
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Bosonic bunching
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X numerics using Wick theorem
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Conclusion

A = Single-atom detection of lattice
= = < gasesin 3D momentum space
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Many-body correlations in the deep Mott regime Ty
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Quantum-Monte Carlo:
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