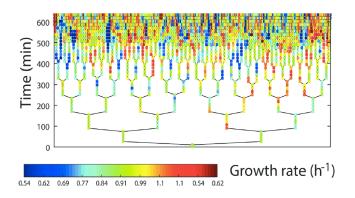
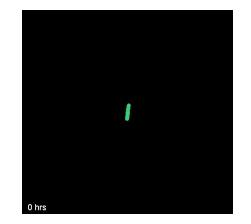
Linking lineage and population observables in biological branching processes

R. Garcia-Garcia, A. Genthon and D. LACOSTE Laboratory Gulliver, ESPCI

• Time-lapse microscopy of a bacteria colony :



S. Lahiri et al. 2017



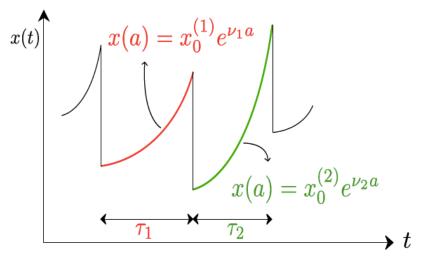
D. J. Kiviet et al. 2014

• Mother machine configuration :

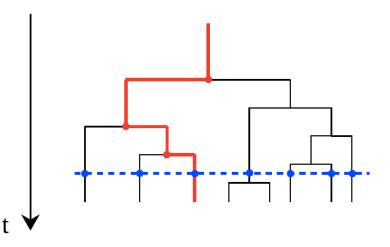


P. Wang et al. 2010

- Parametrization of exponential growth :
 A. Amir 2014 L. Robert 2014
 - Continuous stochastic map
 - Various models of control :
 - size models
 - age models



- Three levels of description :
 - Lineage
 - Snapshot
 - Tree



Cell population dynamics

• Dynamical equation for the number density of cells

$$\partial_t n(\mathbf{y}, t) = -\nu \partial_x [xn(\mathbf{y}, t)] - B(\mathbf{y})n(\mathbf{y}, t) + 2 \int d\mathbf{y}' \Sigma(\mathbf{y}|\mathbf{y}')B(\mathbf{y}')n(\mathbf{y}', t),$$

where

- $\mathbf{y} = (x, \nu)$ for cells of size (or *copy number*) x and single cell growth rate ν
- $B(\mathbf{y})$ division rate
- Factor 2 represents the number of progeny per cell division
- $\Sigma(\mathbf{y}|\mathbf{y}')$ probability of daughter to be in state \mathbf{y} given the mother cell is in state \mathbf{y}' A particular case : symmetric division at constant single cell growth rate

$$\Sigma(\mathbf{y}|\mathbf{y}') = \delta(\nu - \nu')\delta(x - x'/2)$$

• Normalisation
$$\int d\mathbf{y} \Sigma(\mathbf{y}|\mathbf{y}') = 1$$
 and $p(\mathbf{y},t) = rac{n(\mathbf{y},t)}{N(t)}$

Total population
$$N(t) = \int d\mathbf{y}n(\mathbf{y}, t)$$
 and total volume $V(t) = \int d\mathbf{y}xn(\mathbf{y}, t)$

• Growth rate of the population
$$\ \Lambda_p(t)={\dot N\over N}$$
 and of the volume $\ \Lambda_V(t)={\dot V\over V}$

In general
$$\Lambda_V(t) = \Lambda_P(t) + \frac{d}{dt} \ln \int d\mathbf{y} x p(\mathbf{y}, t)$$

• In a steady state
$$\lim_{t \to \infty} \Lambda_P(t) = \lim_{t \to \infty} \Lambda_V(t) = \Lambda$$

- For a lineage similar equation for $\ p(\mathbf{y},t)$ as for $\ n(\mathbf{y},t)$ but with no factor 2

First fluctuation relation (FR) to link both levels

Cell trajectory $\{\mathbf{y}\} = \{\mathbf{y}\}_0^t$

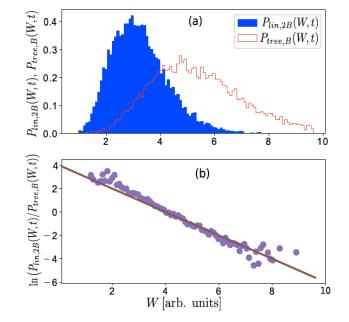
Dynamical activity: $W_t(\{\mathbf{y}\}) = \int_0^t dt' B(\mathbf{y}(t'))$ Time averaged population growth rate $\Lambda_t = \frac{1}{t} \ln \frac{N(t)}{N(0)}$

• First FR :

$$\langle A(\{\mathbf{y}\})\rangle_{tree,B} = \langle A(\{\mathbf{y}\})e^{W_t(\{\mathbf{y}\})-t\Lambda_t}\rangle_{lin,\mathbf{2}B}$$

Crooks like relation G. Crooks 2000

$$P_{tree,B}(W,t) = P_{lin,2B}(W,t)e^{W-t\Lambda_t}$$

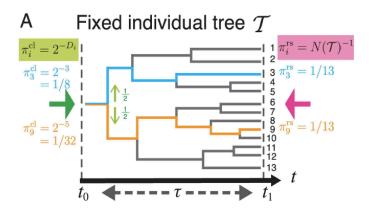


A second FR holds at the same division rate

$$P^{tree}(\{\mathbf{y}\}) = P^{lin}(\{\mathbf{y}\})e^{K\ln 2 - t\Lambda_t}$$

Here $K = K({\mathbf{y}})$ counts the number of divisions, related to fitness

There is a statistical bias present in choosing one individual uniformly in a population as opposed to following a lineage



T. Nozoe et al. 2017 T. J. Kobayashi et al. 2015 Chronological probability distribution forward in time = $P^{tree}({\mathbf{y}})$ Retrospective probability distribution backward in time = $P^{lin}({\mathbf{y}})$

Consequences for mean generation times

• In the long time limit $t/\langle K \rangle \to \langle \tau \rangle$ and $\Lambda_t \to \Lambda$

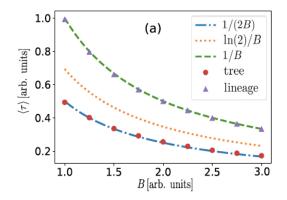
then

$$\langle \tau \rangle_{tree} \leq T_d \leq \langle \tau \rangle_{lin}$$

with $\ T_d = \ln 2 / \Lambda$ the population doubling time

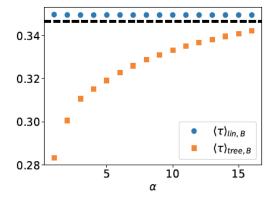
For constant division rate

$$B = \Lambda$$



For non-constant division rate

$$B(x,\nu) = \nu x^{\alpha}$$

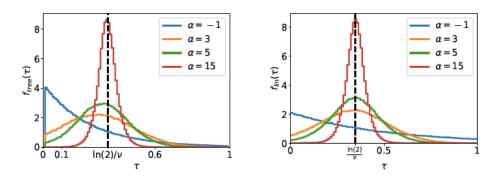


Generation times distributions

- For constant division rate $f_{lin,B}(\tau) = B \cdot e^{-B\tau}$

$$f_{\text{tree},B}(\tau) = f_{\text{lin},2B}(\tau)$$

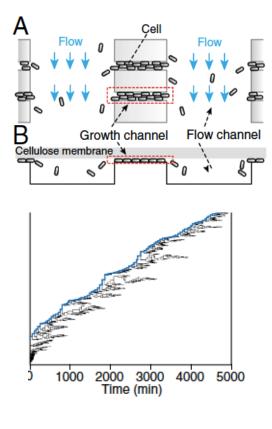
- For non-constant division rate $B(x,\nu) = \nu x^{\alpha+1}$



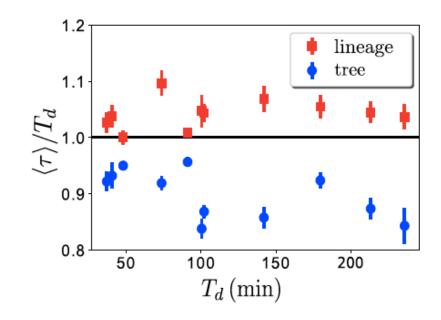
Distributions become peaked near T_d as α increases

For the tree distribution, the mean is always less than T_d

Experimental tests



M. Hashimoto et al. 2015



- Both inequalities are verified in this experiment
- Interpretation used in the paper : an age model with negligible mother-daughter correlations

Conclusions

- A fluctuation relation captures a statistical bias present in the statistics of the branched tree when compared to lineage statistics
- Inequalities for generation times are satisfied by age models without mother-daughter correlations and by size models.
- Fluctuations of single cell growth rate have an impact on the population growth rate

A. Genthon, R. Garcia-Garcia, D. L. Phys. Rev. E, 99, 042413 (2019)