Effects of resource competition on evolution and adaptive radiation

Sergei Koniakhin

Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS

09/07/2019

25^e Congrès Général de la Société Française de Physique

Plan of talk

Introduction

- Lotka-Volterra equations
- Motivation
- Introducing the model
 - Resource contest
 - Mutations model
- Results

Introduction

The competitive Lotka-Volterra equation reads

$$\frac{dn_{\mu}}{dt} = n_{\mu}r_{\mu}\left(1 - \sum_{\mu'=1}^{N} \alpha_{\mu\mu'}n_{\mu'}\right)$$

where n_{μ} are abundances, r_{μ} are per capita growth rates and $\alpha_{\mu\mu'}$ is interaction matrix

L-V equations are very extensively studied in the case of static coefficients. No evolution and its feedback on population dynamics.

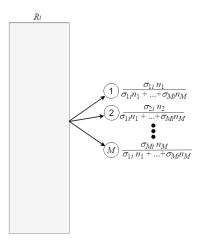
- Incorporate the resources which are shared contested by all species (but not in so complex way as in food-web models)
- Introduce reasonable ecological scenarios for the time behavior of the resources
- Make the coefficients of the interaction matrix α_{ij} experience the evolutionary motivated alterations (but not in so complex way as in genome simulators like SimuPOP)
- Stay within population abundances n_{mu} formalism and not go to Individual Based Models (IBM)

The model

Population dynamics

L-V equations can be rewritten via resource surplus Δ_{μ} as

$$\frac{dn_{\mu}}{dt} = n_{\mu}f(\Delta_{\mu})$$


Function $f(\Delta)$ should grow with Δ and f(0) = 0. The surplus

$$\Delta_{\mu} = \sum_{i} \sigma_{\mu i} h_{\mu i} - 1,$$

where $h_{\mu i}$ is availability of resources i for species μ

 $\sigma_{\mu i}$ is the gaining effectiveness of the resource of type *i* by species μ . In another words $\sigma_{\mu i}$ is an investment of species μ into harvesting resource *i*.

Common resource distribution model


Common formula for resource *i* availability calculating:

$$h_i = \frac{R_i}{\sum_{\mu} n_{\mu} \sigma_{\mu i}}$$

Total abundance in ecosystem is restricted by resource influx R_i .

There is no strong motivation to enhance $\sigma_{\mu i}$ thanks to beneficial mutations.

Developed resource distribution model

The species can not gain more than $R_i \sigma_{\mu i}$ of resource. It is favorable to increase the gaining effectiveness $\sigma_{\mu i}$.

Abundance is restricted by $R_i \sigma_{\mu i}$

Evolutionary aspects

No specialists in everything: we restrict $\sum_{i=1}^{R} \sigma_{\mu i} < 1$

Deleterious mutations

At each step we subtract from $\sigma_{\mu i}$ some small uniformly distributed random value

Beneficial mutations

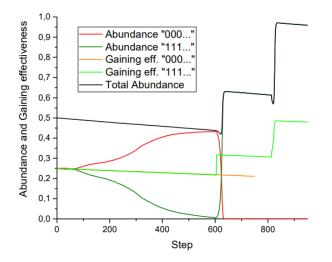
Rarely we add some large *exponentially* distributed values to $\sigma_{\mu i}$. Parameter D controls strength of beneficial mutations

- D = 0 no beneficial mutations
- $\blacktriangleright \ D=1$ deleterious and beneficial mutations fully compensate at large times

Reproductive isolation: forking/speciation time T to split the species μ into species μ and ν

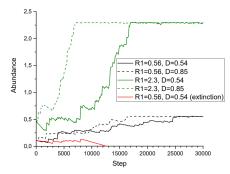
The **Molecular clock** as a randomly alternated bit array like "0001000110000" is used to trace the phylogeny

Results

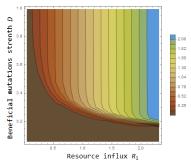

The model should obey the following ecological axioms:

- Competitive exclusion principle
- Resistance to genomic decay
- Absence of vacant ecological niches

The model should obey the following ecological scenarios:

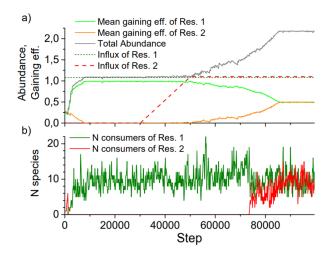

- ► Specialization in constant environment (constant resource influx *R_i* for several resource types)
- Omnivory in rapidly changing environment (randomly alternating resource influx R_i)

Competitive exclusion principle



Due to strong beneficial mutation at 600-th step "green" species survives and "red" species is extincts.

Genomic decay resistance



Abundance vs time step at various levels of resource influx R_1 and level of beneficial mutaions D

Survival phase diagram: abundance after 100000 steps at various levels of resource influx R_1 and level of beneficial mutaions D

No vacant ecological niche

From 30000 to 50000 step the influx of second resource R_2 grows from 0 to 1. As a result, its "red" consumers appear at ≈ 75000 step.

Ecosystem in stable environment

.

$$R_{1} = R_{2} = R_{3} = R_{4} = R_{5} = \text{const}$$
Abundance $-\sigma_{\mu 1} - \sigma_{\mu 2} - \sigma_{\mu 3} - \sigma_{\mu 4} - \sigma_{\mu 5}$

$$= \frac{0.042 - 0 - 0 - 0.94 - 0.01 - 0}{0.056 - 0 - 0 - 0.94 - 0.03 - 0}$$

$$= \frac{0.042 - 0 - 0 - 0.94 - 0.03 - 0}{0.029 - 0 - 0 - 0.94 - 0.03 - 0}$$

$$= \frac{0.042 - 0 - 0 - 0.94 - 0.03 - 0}{0.029 - 0 - 0 - 0.94 - 0.03 - 0}$$

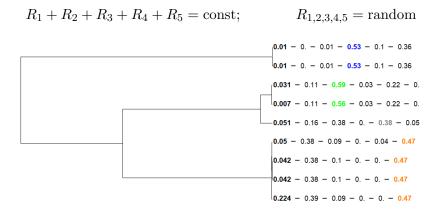
$$= \frac{0.042 - 0 - 0 - 0.94 - 0.03 - 0}{0.029 - 0 - 0 - 0.94 - 0.01 - 0}$$

$$= \frac{0.042 - 0 - 0 - 0.94 - 0.03 - 0}{0.029 - 0 - 0 - 0.94 - 0.01 - 0}$$

$$= \frac{0.042 - 0 - 0 - 0.94 - 0.01 - 0}{0.029 - 0 - 0 - 0.94 - 0.01 - 0}$$

$$= \frac{0.042 - 0.04 - 0.01 - 0.01}{0.042 - 0.04 - 0.01 - 0.01}$$

$$= \frac{0.042 - 0.04 - 0.01 - 0.02}{0.042 - 0.01 - 0 - 0 - 0.02}$$


$$= \frac{0.043 - 0 - 0.99 - 0 - 0 - 0.02}{0.043 - 0 - 0.04 - 0.01 - 0.95 - 0}$$

$$= \frac{0.049 - 0.03 - 0 - 0 - 0.95 - 0}{0.022 - 0 - 0 - 0 - 0.95 - 0}$$

$$= \frac{0.049 - 0.03 - 0 - 0 - 0.95 - 0}{0.049 - 0.03 - 0 - 0 - 0.95 - 0}$$

Strong specialization: for each species some of $\sigma_{\mu i} \approx 1$

Ecosystem in unstable environment

No specialization: no dominating gaining effectiveness $\sigma_{\mu i}$

- The model bringing evolutionary aspects to population dynamics is introduced
- The model reproduces main ecological concepts

Thanks for your attention!