Fusion μ -catalysée en plasmas ultradense

C. Deutsch¹, J.P. Didelez², A. Bendib³, and K. Bendib-Kalache³

¹Laboratoire de Physique des Gaz et Plasmas - LPGP, UPS, Univ. Paris-Saclay, 91405 Orsay, France ²Institut de Physique Nucléaire - IPN, Univ. Paris-Saclay, 91405 Orsay, France ³Laboratoire Electronique Quantique - LEQ,, USTHB, B.P. 32, El Alia 1611, Alger, Algeria

> 25^{*ième*} Congrès Général SFP Nantes, 8–12 juillet 2019

Figure 1: (color online) (a) Electron-electron covariant Möller diagram. (b) D-Electron-disintegration and (c) T-Electron-disintegration. In (b) and (c) π^- appears when REB energy $E_b \geq 150$ MeV.

- Ralentissement des $\pi^-(\mu^-)$ à quelque MeV en **plasmas ultradenses** :
 - WDM, $5.64 \times 10^{23}/cc$, 1.75 eV
 - FIS, $10^{26}/cc$, 0.1 et 1 keV
- Formation d'ions moléculaires hydrogenoïdes
- Problématique du collage ('Stincking')
- Taux de production d'énergie rapportée au coût de production du π^- .

ANTICIPATION

- 134 DT fusion en WDM sur 500 psec
- 20 DT fusion en FIS sur 20 psec

Longueurs pertinentes

$$n_e \sim 10^{26} \ e - \mathrm{cm}^{-3} \qquad T \sim 1 \ keV$$

$$a_{ii} = \left(\frac{4}{3}\pi n_i\right)^{-1/3} \sim 1.33 \times 10^{-9} \mathrm{cm}$$

Longueur de Debye $\sim 2.35\times 10^{-9}~{\rm cm}$

Rayon de Bohr (electron) = 5.29×10^{-9} cm

Rayon de Bohr (pion) = 1.94×10^{-11} cm

 $\Pi\text{-}\mathrm{D}$ and $\Pi\text{-}\mathrm{T}$ atoms hardly affected by electron Debye-screening.

RECOMBINAISON RADIATIVE $\Pi^{-} - D + (T^{+}) (R_{2})$

$$\sigma_0 = (2^7 \pi e^2 h / 3m_\pi'^2 c^3 g^2) e^{(-4/g)tan^{-1}} g(1+g^2)^{-2} (1-e^{-2\pi/g})^{-1}$$

g is the ratio of the initial translational energy of the electron to the energy of ionization of the exoH atom. For low velocities the cross becomes infinite:

$$\sigma_0 \sim (2^7 \pi e^2 h/3 e_1^4 m_\pi^{\prime 2} c^3) g^{-2} \sim (V_\pi/c)^{-4} \quad e_i = 2.718...$$

For high velocities it is given by

$$\sigma_0 \sim (64e^2h/3m_\pi^{\prime 2}c^3)g^{-5},$$

where

$$g = \frac{1}{2} \cdot \frac{139.5 \times 10^6 (V_\pi/c)^2}{\frac{273 \times 27.2}{2n^2}}$$
$$= 18787 \ n^2 \left(\frac{V_\pi}{c}\right)^2$$

J. R. Oppenheimer. Zeit. f. Physik **41**, 268 (1927); Phys. Rev. **31**, 349 (1928).

X-Ray (Stark) line profiles emitted by D/T μ exoatoms in FIS plasmas (Ne= $10^{26}/cc,$ T= 1 keV). Energies are in Ryd = 2812.35 eV (muon a.u.). Lyman α with unperturbed $\lambda = 6.146 \mathring{A}$.

Taux de Recombinaison D/T ions - $\mu \gamma^{\mu}(sec^{-1}) = N_{D/T\bar{\sigma}_0 v}$ in terms of exoatom main quantum number n and Maxwell averaged $\bar{\sigma}_0$ taken down to $10^{-13} V_{th}$

n	WDM $(N_{D/T} = 5.64 \times 10^{23}/cc, T = 1.75eV)$	$\operatorname{FIS}(N_{D/T} =$	$= 10^{26}/cc)$
		100 eV	$1 \mathrm{keV}$
1	6.109×10^{18}	2.50×10^{18}	7.92×10^{16}
2	3.82×10^{17}	1.564×10^{17}	4.95×10^{15}
3	7.54×10^{16}	3.09×10^{16}	9.77×10^{14}
4	2.39×10^{16}		
5	9.77×10^{15}		
6	4.71×10^{15}		

Recombinaison 3-corps $D/T-\mu-D/T$ via la polarisabilité α et le dipole magnétique de l'exoatome $D/T-\mu$

$$\bar{K} = (2/\mu^{1/2})[\alpha^{1/2} + c\mu_D(2/_BT)^{1/2}]$$

with

$$\alpha = \frac{1}{n} \sum_{\ell=0}^{n-1} \left[a_0^{n\ell} + 2 \sum_{m=0}^{\ell} a_2^{n\ell} \frac{3m^2 - \ell(\ell+1)}{\ell(2\ell-1)} \right] cm^3,$$

where

$$a_0^{n\ell} = \frac{n^4}{4} [4n^2 + 14 + 7\ell(\ell+1)]$$

$$a_2^{n\ell} = \frac{-n^4\ell}{4(2\ell+3)} [3n^2 - 9 + 11\ell + \ell(\ell+1)]$$

and dipole moment $\mu_D = \frac{ea_0^{\mu}}{2n} \sum_{\ell=0}^{n-1} (3n^2 - \ell(\ell+1))$ averaged over (n, ℓ) levels through Holtsmark Stark-mixing, with tuning parameter c featuring either a locked dipole (c = 1) or a rotating one (c = 0.1).

RECOMBINAISON 3 corps $D/T-\mu-D/T(psec^{-1})$

Three-body capture rates $N_{D/T}\bar{K}$ (psec⁻¹) in terms of exoatom main quantum number n and amount of dipole contribution c.

a)	WDM	target ($(T = 1.75 eV, N_{D/T} = 5.64 \times 10^{23})$	/cc)
----	-----	----------	--	-----	---

n	1	2	3	4	5	6
c = 0.1	1.34	5.71	14.45	28.85	50.2	79.73
c=1	10.55	39.5	89.2	161	256	375.5
b) <u>F</u>	IS targ	get $(T$	= 1ke	$V, N_{D/T} =$	= 10 ²⁶ /	/cc)
n		1	2	3	4	
c=0).1 64	.32	374.46	1151.3	2757	.0
c=	1 13	2.64	624.95	1705.4	3601.	.25
c) <u>FI</u>	S targe	et (T =	= 100e	$V, N_{D/T}$:	$= 10^{26}$	/cc)
n	-	L	2	3	4	
c=0	0.1 80	.73 4	34.64	1824.44	2857	7.3
c =	1 29	6.8 12	226.8	3036.75	5953.	.83

Analyse Dynamique

$$\begin{aligned} \frac{dN_{\mu}(t)}{dt} &= -(2\lambda_{\frac{D}{T}\mu} + \lambda_{0}^{\mu})N_{\mu}(t) + 2\lambda_{\frac{D}{T}\mu\frac{D}{T}}N_{\frac{D}{T}\mu}(t), \\ \frac{dN_{\mu}(t)}{dt} &= 2\lambda_{\frac{D}{T}\mu\frac{D}{T}}N_{D/T}N_{\mu}(t) - 2(\lambda_{\frac{D}{T}\mu} + \lambda_{0}^{\mu})N_{\frac{D}{T}\mu}(t) \\ \text{expressed more compactly under the form} \end{aligned}$$

$$\begin{aligned} \frac{dN_{\mu}(t)}{dt} &= -a_1 N_{\mu}(t) + 2b_1 N_{D/T\mu}(t), \\ \frac{dN_{\mu}(t)}{dt} &= 2a_2 N_{\mu}(t) - 2b_2 N_{D/T\mu}(t), \end{aligned}$$

where

$$a_1 = 2\lambda_{D/T\mu}N_{D/T} + \lambda_0^{\mu},$$

$$a_2 = \lambda_{D/T\mu}N_{D/T},$$

$$b_1 = \lambda_{D/T\mu D/T}$$

and

$$b_2 = b_1 + \lambda_0^{\mu}$$

PROBABILITE DE REACTIVATION (μ^-) R=1-exp(-JR)

$(\cdots) \rightarrow \mu (\cdots \rightarrow)$						
W	'DM		F	IS		
JR	R	100 e	V	$1 \mathrm{ke}$	V	
		JR	R	$_{\rm JR}$	R	
7.08	0.9992	200.6	1	12.28	1	

(a) $He_{\mu}^{+}(n=1)$

(b) $D/T\mu$

WDM (n=	6)	FI	FIS (n=3)		
JR	R	100 eV		$1 \mathrm{keV}$	
		JR	R	JR	R
2.74×10^{-4}	0	1.34×10^{-6}	0	2.5×10^{-4}	0

PROBLEMATIQUE du COLLAGE He^+_μ

$$\sigma_{strip}(E) = \sigma^{tr}(E) + \sigma^{ion}(E)$$

sum of charge transfer and ionization with

$$\sigma_n^{tr} = 324n^4(nv)^2 / \{ [0.187 + (nv)^2] [286 + (nv)^7] \}$$

and

$$\sigma_n^{ion} = 5.43n^4 (nv)^{16} / \{ [1.30 + (nv)^{11.8}] [204 + (nv)^{6.2}] \},$$

in $6.55 \times 10^{-22} cm^2$ for muonic atoms for a given bound state n in terms of the He^+_μ velocity in m.a.u with respect to the in situ D/T ions.

The Jackson-Rafelski ratio (JR) then denotes the probability that the negative muon will be stripped off [1,2] during its slowing down.

It reads as

$$JR = -N_{D/T} \int_0^{3.5MeV} \frac{\sigma_{strip}(E)}{\frac{dE}{dx}} dE,$$

RALENTISSEMENT $He^+_{\mu}(35MeV)$ et $\mu^-(V_0 = 2.19 \times 10^8 \text{cm/sec})$

PLASMA WDM $Ne = 5.64 \times 10^{23}/cc$

(a) He^{-}_{μ}						
T(eV)	1.75	5	10	15		
$T_{\rm stop}({\rm psec})$	91.57	21.89	9.74	2.59		
$R(\mu m)$	513.7	102.43	41.62	3.02		

(b) μ^{-}

T(eV)	1.75	5	10	15	
$T_{stop}(psec)$	0.372	0.175	0.0975	0.071	
$R(\mu m)$	0.56	0.234	0.12	0.083	

PLASMA FIS
$$Ne = 10^{26}/cc$$

(a) He^+_μ				
T(eV)	100	1000		
$T_{stop}(psec)$	9.554	0.586		
$R(\mu m)$	79.45	3.247		

(b) μ^-					
T(eV)	100	1000			
$T_{\rm stop}({\rm psec})$	0.00394	0.0034			
$R(\mu m)$	0.0063	0.0053			

TRANSITIONS RADIATIVES

Higher levels $n \ge 3$ have to be treated with radiative decay down to n=1, included, according to the relationship

$$\Gamma^{\mu}_{rad,if} = M \ \Gamma^{H}_{rad,if} \ ,$$

for a meson of mass M and usual allowed dipole transitions taking place in exoatom (M) or usual H atom, between states i and f. In this regard, it should appreciated that the apparent restriction to $np \to 1S$ transitions, for exoatom $\frac{D}{T}\mu$,

$$\Gamma^{\mu}_{rad,n1\to 10} = 206.77 \frac{2^8 n(n-1)^{2n-2}}{(n+1)^{2n+2}} sec^{-1},$$

is not a real one, because the very high Holtzmark field due to the high charge densities, garantees a very efficient Stark mixing of (n, ℓ) sublevels. Transitions are pictured on Table III.

<u>Hydrogenic radiative decay times for exoatom</u> $\frac{T}{D}\mu$ in level n.

n	2	3	4	5	6
$\tau \text{ decay (sec}^{-1})$	7.75×10^{12}	2.91×10^{11}	7.12×10^{11}	141×10^{10}	2.46×10^{10}

Energie thermonucléaire produite durant le temps de confinement τ

$$Ef = 2\lambda_{\frac{D}{T}\mu\frac{D}{T}} \times Q_{DT} \int_0^\tau dt N_{\frac{D}{T}\mu}(t)$$

rapportée au coût de la production des μ

$$R_e = \frac{Ef}{N_\mu (t=0)E_\mu}$$

pris au minimum en fonction du nombre quantique
n de l'exoatom $\frac{D}{T}\mu$ et de la contribution dipolaire c

WDN	1 (500 psec)	FIS 100 eV (1 psec)	FIS 1 keV (1psec)
~ 1	o 1	0 1 0 1	. 1 . 1
C=1	c=.1	c=1 $c=.1$	c=1 $c=.1$
n=1	33.1 4.17	n=1 1.87 0.57	n=1 0.83 0.404
n=2	124 17.93	n=2 3.89 2.72	n=2 3.49 2.19
n=3	280 45.4	n=3 17.4 11	n=3 3.90 3.32
n=6	1093 246.35		

SOMMAIRE

- $\pi^- D^+/T^+$ états liés démontrés en plasmas FIS et WDM (R_2)
- Attachement D^+/T^+ sur exoatomes assurés par recombinaison 3-corps (R_3)
- Diagnostique X des exoatomes
- Les cibles ultra-denses et de courte durée de vie domine l'annihilation pion-nucleon
- Les α'_S produits de fusion ne 'collent' pas le catalyseur $\pi^-(\mu^-)$.

CONCLUSION

La catalyse mesonique apparaît possible dans les plasmas ultradenses.