

25^e Congrès Général de la Société Française de Physique

Chiral plasmonic effects probed at the single-nanoparticle level

<u>F. Perrier</u>^{1*}, C. Bonnet ¹, M-A. Lebeault¹, S. Hermelin¹, M. Pellarin¹, J. Lermé¹, J. Béal², D. Gérard², S. Jradi², A. Issa², A. Movsesyan², P-M. Adam², R. Bachelot² and E. Cottancin¹

¹ Univ. Lyon, UCBL, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France ² Light, nanomaterials, nanotechnologies, Charles Delaunay Institute, CNRS, University of Technology of Troyes (UTT), 12 rue Marie Curie CS 42060 10004 Troyes Cedex, France

floriane.perrier@univ-lyon1.fr

Université Claude Bernard

Lyon

- → Collective oscillation of the electronic cloud
- \rightarrow Far field observation : extinction / scattering measurements

300nm

SEM images

DF spectra 18

Scattering intensity

16

14

12 -10 -

8

6

400

500

- size
- shape
- environment

Rod Disk

Triangle 1 Triangle 2

900

600

700

Wavelength (nm)

800

 $\vec{E}_{\rm inc}$

extinction spectra of a gold bipyramid in different medium (air, water and water + glycerol)

Rye et al., Nanoscale (2018) 10, 16094-16101

Floriane Perrier

Spatial Modulation Spectroscopy

a transmission spectrophotometer for individual nanoparticles

SMS set-up with polarization control: double modulation

From optical theorem to Jones formalism

Measurement

$$M = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \theta$$
$$A_i = A_0 \quad e^{-\alpha_i/2} \quad e^{-ik_i/2}$$

the collected intensity depends on the nano-object anisotropy parameters

- $\boldsymbol{\theta}$: orientation of the eigenvector basis
- Dichroism : $\Delta \alpha = \alpha_1 \alpha_2$
- Birefringence : $\Delta k = k_1 k_2$

several measurements for different orientations of the analyzer

Proof of principle

Dimers of gold nanospheres

Floriane Perrier

Linear anisotropy

 $\Delta \alpha \& \Delta k$

→ good agreement with theoretical predictions
 → validation of the double modulation technique

Floriane Perrier

Chiral assembly

Chiral objects : Gammadions

Kuwata-Gonokami et al., *PRL* (2005), 95, 227401 Hendry et al., *Nature Nanotech*. (2010), 5, 11, 783 Arteaga et al., *OE* (2016), 24, 3, 2242 Garcia-Guirado et al., *Nano Lett*. (2018), 18, 6279-6285

Lithographied lattice of gold gammadions

Chiral assembly

Chiral objects : Gammadions

→ Good mirroring of the structures
→ CD of a few gammadions

Chiral assembly

Chiral objects : « One »

- → CD spectrum of a few structures
 → Mirroring effects observed
- → Further investigations required to interpret the spectra

Conclusion & perspectives

- Demonstration of a new technique to probe individual anisotropic NPs
 - Chiro plasmonic lattices and finite element method simulations
- Circular dichroism of various single nano-objects

Team « Clusters & Nanostructures »

J. Laverdant

M. Hillenkamp

M. Broyer

E. Cottancin (Thesis director)

M.-A. Lebeault (co-supervisor)

C. Bonnet (co-supervisor)

M. Pellarin

S. Hermelin

J. Lermé

Investigation of the coupling between a single NP and chiral molecules

Thank you for

your attention !

Floriane Perrier

Congrès Général de la SFP - 2019

Institut Charles Delaunay

C. Moulin