

Laboratoire de Physique Subatomique et de Cosmologie

CONGRES SFP 2019 - NANTES

REVUE SUR LES SOURCES D'IONS PLASMA APPLIQUEES AUX ACCELERATEURS ET PERSPECTIVES

Congrès Général SFP, Nantes, 8-12 juillet 2019

Laboratoire de Physique Subatomique et de Cosmologie

Introduction

- Sources d'ions à filaments
- Sources laser
- Sources d'ions plasma
- Perspectives

Introduction

Source d'ions stables

- > Fabriquer les faisceaux d'ions utilisées:
 - Auprès des grands accélérateurs d'ions lourds
 - physique des particules, physique nucléaire
 - Pour traiter certains cancers (hadronthérapie, protonthérapie)
 - Pour étudier les propriété des atomes, molécules, des surfaces, etc à basse énergie

- Budget Source ~ 1-5% du budget total du projet : non négligeable!
- La charge élevée des ions Peut réduire significativement la longueur/le cout de l'accélérateur

Laboratoire de Physique Subatomique et de Cosmologie Introduction

Sources d'ions radioactifs

Pour étudier les propriétés des noyaux exotiques à faible durée de vie loin de la zone de stabilité

✓ Voir la présentation de Maher Cheikh Mahmed

Famille de Sources d'ions

Subatomique et de Cosmologie

Source à Filament moderne : IHC

- Source industrielle à chauffage indirect de cathode (IHC)
 - Implantation ionique, ions 1+
 - Mais pulvérisation de la cathode...

Laboratoire de Physique Subatomique et de Cosmologie

I~30 mA Δ*t*~800 à 2000 h

Electron Beam Ion Source (EBIS)

- Source pulsée pour les accélérateurs linéaires et synchrotrons
 - Très basse pression (~10⁻⁹ mbar)
 - Très forts états de charge (noyaux nus!)

• charge d'espace

lons argon vs temps

EBIS à Brookhaven, USA (RHIC)

▶ 1.7 mA – 10 µs – 5 Hz

→ SOURCE LASER

Source d'ions Laser

Haute sélectivité et faible intensité pour les ions radioactifs

<u>Voir la présentation de Maher Cheikh Mahmed</u>

→ SOURCE LASER

Source d'ions par ablation laser

- Recherche du CERN années 2000
 - Objectif: insertion mono-tour dans les synchrotrons du CERN pour le LHC
 - Permet d'économiser une mise en forme et une injection multi-tour complexe
 - Projet arrêté
 - pbm laser
 - Dispersion en énergie

> Nouvelle étude en cours à IMP Lanzhou, Chine

Specifications : laser CO_2 -N₂-He 100J-10¹³W.cm⁻² pulses 50ns à 1Hz 1.4 10¹⁰ Pb²⁵⁺ par pulse

Source d'ions Radio Fréquence

Faisceau d'ions H⁻

- Oak Ridge, CERN
- 300W @ 13 MHz CW
- 60 kW [1ms/60Hz] @ 2 MHz
- Maintenance /3 semaines
- Production de H⁻ en volume:
 - 10 mA
- Production en surface (Cs)
 - 50 mA total
- Filtrage électrons , gestion Cs, gestion electrons co-extraits

Plot et images: ORNL,CERN

Laboratoire de Physique Subatomique et de Cosmologie → Application Source H

Application sources H⁻ aux tandems

Laboratoire de Physique Subatomique et de Cosmologie

Source D⁻ pour les Tokamaks

Subatomique et de Cosmologie

Gas

ZONE RCE

Source d'ions à la Résonance Cyclotronique Electronique (RCE)

- Électrons ~100 eV
- Ions froids
- Source d'ions léger 1+ SILHI, CEA Saclay
 - P~10⁻⁵ mbar
 - 150 mA H⁺ continu
 - 80% H⁺ >>H₂⁺,H₃⁺
 - 2 kW HF@2.45 GHz (λ~12 cm)
- Utilisé comme injecteur au GANIL, à ESS (Suède), IPHI...

$$\omega_{HF} = \omega = \frac{eB}{m}$$

→ Source RCE miultichargés

Source d'ions RCE multichargés

Congrès Général SFP, Nantes, 8-12 juilles Blines

Source d'ions RCE multichargés

- $\sim n_e \sim 10^{10} 10^{13} \ cm^{-3}$
- ► Loi d'échelle: $n_e \propto \omega_{HF}^2$

- $T_e > 5 \text{ keV}$ $T_i \sim 1-10 \text{ eV}$ $P \sim 10^{-7} \text{ mbar}$
- Solénoïdes Culasse en fer doux Chambre à plasma Lignes de champ magnétique Aimants permanents électrode à la masse vide Partie sous atomes haute tension Vers la ligne Faisceau d'ions d'analyse **ZONE RCE** microonde Aimants permanents Surface de résonance cyclotronique électronique

Source d'ions moderne 28 GHz

- ➢ VENUS, Berkeley, USA
- Aimant SC NbTi
- Volume chambre ~ 8.5 litre
- ➤ Hexapole 2.2 T Miroir axial 3.5 T

Laboratoire de Physique Subatomique et de Cosmologie

Performances Sources d'ions modernes

Grenebie Laboratoire de Physique

Laboratoire de Physique Subatomique et de Cosmologie

Dans un plasma d'oxygène

modified

Source plasma « gasdynamic »

- ➤ IAP RAS, SMIS 37
- 100 KW-1 ms @ 37.5 GHz
- pulses up to 450 mA of H⁺
- Plasma collisionnel : P ~10⁻⁴ -10⁻² mbar
- Emittance très petite 0.06 pi/mm.mrad 1σRMS

Analyzer magnet current, A

 H_2^{\dagger}

0.9

0.8

0.6

0.3 0.2

0.1

65 70 75 80 85

Grensb Laboratoire de Physique

Les boosters de charge

Augmenter l'état de charge des ions radioactifs de courte durée de vie

- Etude CERN: technologies complémentaires
- Permettent de réduire le coût de la post accélération

3

. V.J

0

Problèmes ouverts sources RCE

- Un plasma très complexe et mal connu
 - Hors équilibre, anisotrope
 - Fonction de distribution énergie électronique
 - Confinement électrostatique des ions
 - Puits de potentiel: force ponderomotive, electrons chauds?
 - Couplage microonde-plasma
 - Gaine plasma et formation de l'émittance du faisceau
 - Instabilité cinétique (anisotropie FDEE électrons)

Motivations pour innover

- Loi d'échelle en fréquence vérifiée : $I_{ions} \sim f_{HF}^2 V$
- Vers des plasmas de sources d'ions multichargés plus denses
- Plus d'intensité à plus haute fréquence : 45 GHz , 60 GHz
- > Mais champs magnétiques intenses $B \sim f$: de 5 à 7 T!

Besoins de faisceaux d'ions pulsés ultra intenses

GSI FAIR U²⁸⁺ 15emA/100μs

JLAB MEIC Pb³⁰⁺/ Au³²⁺ 0.5 emA/500µs

BNL RHIC Au³²⁺ 2 emA/10µs

IMP HIAF U³⁴⁺ 1.7 emA/400µs

Besoins de faisceaux d'ions continus intenses

MSU FRIB U³⁴⁺ 13pµA/CW

IMP HIRFL U⁴¹⁺ 100eµA/CW

RIKEN RIBF U³⁵⁺ 525eµA/CW

SPIRAL2 Ar¹³⁺ 1emA/CW

Rupture Technologique à Lanzhou

- ➤ aimant en Nb₃Sn
 - Conception aimant LBNL, CA, USA
 - peak field 11.8 T!
 - risque projet fort!

2.2 W GM

2.2 W GM

Perspective : Electron Cyclotron Resonance I on Plasma Accelerator

- ECRIPAC Proposé par R. Geller en 1994
- Le triple effet « kiss cool »
 - RCE : chauffage résonant des électrons
 - GIRAC : chauffage ECR relativiste avec B(t)
 - PLEIADE : transfert de $v_{\perp} \rightarrow v_{\parallel}$ (conservation de $\mu = W_{\perp}/B$)

Laboratoire de Physique Subatomique et de Cosmologi

Développer un ECRIPAC

- Simuler une machine avec un code PIC et valider le concept
 - E_i max de 25 à 470 MeV/A selon la longueur L ?
 - Intensité du faisceau d'ions ?
 - 10 kW@2.45 GHz L=5mètre => Ei~1
- Fabriquer la machine !
 - Applications médicales
 - Applications industrielles

MERCI POUR VOTRE ATTENTION

