

STM study of topological superconductivity in Pb/ Si(111)

Gerbold Ménard Congrès de la SFP - 10/07/2019

25^e Congrès Général de la Société Française de Physique

Current adress: CEA Saclay - SPEC Nanoelectronics group I. STM-STS & superconductivity - Magnetic impurities in superconductors

II. Individual magnetic impurities in Pb/Si(111)

III. Topological superconductivity

IV. Majorna edge states and bound states.

V. Conclusion

STM & Yu-Shiba-Rusinov bound states

Yu-Shiba-Rusinov bound states

Cooper pairs split under a Zeeman field

The number of states depends on the spatial extension of the interaction. For a point defect, only one pair of Shiba states will appear within the gap.

Yu-Shiba-Rusinov bound states

First STM measurement of YSR bound states.

A. Yazdani et al. Science 275 1767-1770 (1997)

Magnetic impurities in Pb/Si(111)

Monolayer of Pb/Si(111)

There exists different superconducting phases in monolayer Pb/Si(111)

T. Zhang et al. Nature Physics 6, 104 (2010)

Example of bound states in Pb/Si(111)

Case of the SIC phase and $\sqrt{7} \times \sqrt{3}$

Ménard, G.C. et al. Eur. Phys. J. Spec. Top. (2019)

Example of bound state (NbSe2)

Imaging of a single Fe atom embedded in 2H-NbSe2

The dephasing between the electron & hole like state is linked to the relation between the gap, the magnetic interaction and the non magnetic interaction.

G. Ménard et al. Nat. Phys. 11 1013-1016 (2015)

Furthermore, using a 2D material increases by order of magnitude the extent of the wavefunction associated with the YSR bound states.

Topological superconductors

Topology & solid state physics

3 ingredients are required for topological superconductivity:

- Superconductivity
- Spin orbit interaction
- Magnetism

These are provided by:

- Electron phonon interaction
- Surface effect/Heavy element
- Magnetic atoms/External field

Topology & solid state physics

3 ingredients are required for topological superconductivity:

- Superconductivity
- Spin orbit interaction
- Magnetism

These are provided by:

- Electron phonon interaction
- Surface effect/Heavy element
- Magnetic atoms/External field

Topology & solid state physics

Energy (a.u.) a 20 H 20 Chiral **Helical** Chiral 0 0 -20 -20 -100 **k_x (a.u.)** 10 -1010 0 20 20 Helical Gap Δ 0 0 -20 -20 -100 10 -1010 0 20 20 Trivial 0 0 **Trivial** -20 -20 10 10 -10-10n 0 V_z

The edge state associated to topological superconductivity is called a **Majorana fermion** They are anyons that possesses non Abelian statistics.

Phase diagram of topological superconductivity

Previous observations of ZBP

V. Mourik et al. Science 336 1003-1007 (2012)

Majorana edge states & Majorana bound states in Pb/Co/Si(111)

Theory of Majorana edge states

$$\hat{H}_{0} = \begin{bmatrix} \xi_{k} \tau_{z} + \Delta_{S} \tau_{x} \end{bmatrix} \text{Trivial superconductor}$$

$$\hat{H}_{topo} = \begin{bmatrix} V_{z} \sigma_{z} \end{bmatrix} + \begin{bmatrix} \left(\alpha \tau_{z} + \frac{\Delta_{T}}{k_{F}} \tau_{x}\right) (\sigma_{x} k_{y} - \sigma_{y} k_{x}) \end{bmatrix} \text{Triplet} \text{superconductivity \& Spin-orbit} \text{interaction}$$

Theory of Majorana edge states

$$\hat{H}_{0} = \begin{bmatrix} \xi_{k} \tau_{z} + \Delta_{S} \tau_{x} \end{bmatrix} \text{Trivial superconductor}$$

$$\hat{H}_{topo} = \begin{bmatrix} V_{z} \sigma_{z} \end{bmatrix} + \begin{bmatrix} \left(\alpha \tau_{z} + \frac{\Delta_{T}}{k_{F}} \tau_{x} \right) (\sigma_{x} k_{y} - \sigma_{y} k_{x}) \end{bmatrix} \text{Triplet} \text{superconductivity \& Spin-orbit} \text{interaction}$$

A spatially varying magnetic field in a triplet superconductor can induce a topological transition in space.

 $\alpha \neq 0$

Topological Majorana edge states

Ménard, G.C. et al. Nat. Comm. 8, 2040 (2018)

Topological Majorana edge states

Ménard, G.C. et al. Nat. Comm. 8, 2040 (2018)

Topological Majorana edge states

What shows up as a perfect ring at zero energy splits at finite bias into two well separated structures.

By taking a cut through the center of the cluster we can image the spatial dispersion of the topological edge band.

Ménard, G.C. et al. Nat. Comm. 8, 2040 (2018)

Theory of Majorana bound states

We take the Hamiltonian that was previously used adding a vortex term in the spin-orbit coupling such that

Superconductivity Magnetic interaction $\hat{H} = \int d^2 r \Psi_{\vec{r}}^{\dagger} \left[(-\eta \nabla^2 - \mu) \tau_z + \Delta_S \tau_x + V_z(\vec{r}) \sigma_z \right] \Psi_{\vec{r}} + H_{\text{SO-defect}}(\vec{r})$

$$\hat{H}_{\text{SO-defect}}(\vec{r}) = \hat{c}_{\vec{r}\uparrow}^{\dagger} \left\{ \alpha e^{i\theta(\vec{r})}, \nabla_x - i\nabla_y \right\} \hat{c}_{\vec{r}\downarrow} + \text{h.c.}$$

Spin-orbit interaction with vortex in phase

Theory of Majorana bound states

From a continuum of state we now only have one pair of well-separated zero-bias states within the gap

Superconductivity Magnetic interaction $\hat{H} = \int d^2 r \Psi_{\vec{r}}^{\dagger} \left[(-\eta \nabla^2 - \mu) \tau_z + \Delta_S \tau_x + V_z(\vec{r}) \sigma_z \right] \Psi_{\vec{r}} + H_{\text{SO-defect}}(\vec{r})$

$$\hat{H}_{\text{SO-defect}}(\vec{r}) = \hat{c}_{\vec{r}\uparrow}^{\dagger} \left\{ \alpha e^{i\theta(\vec{r})}, \nabla_x - i \nabla_y \right\} \hat{c}_{\vec{r}\downarrow} + \text{h.c.}$$

Spin-orbit interaction with vortex in phase

Topological Majorana bound states

Slightly changing the amount of Co on the surface changes the size of the cluster and zero bias peak can be observed at the center of magnetic clusters.

Conclusion

- * We measured individual impurities in a variety of phases
- * We grew disordered nano clusters of Co buried under Pb on a Si(111) substrate and observed YSR bands.
- * We grew ordered nanoclusters and observed topological edge states
- * In slightly different configuration we observed disorderproof zero-bias peaks

Collaborators

STM team in INSP:

C. Brun, T. Cren, F. Debontridder, D. Demaille, R. Leriche, D. Roditchev.

Theory team in LPS:

S. Guissard, A. Mesaros, P. Simon, M. Triff

Thank your for your attention