BaNiS₂ monolayer as possible Z2 topological insulator

Michele Casula

CNRS and Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France

Collaborators

Andrea Gauzzi

David Santos-Cottin

Marino Marsi

Niloufar Nilforoushan

Adriano Amaricci

Michele Fabrizio

Philipp Werner

Luca de' Medici

Yannick Klein

Acknowledgments

IGCC

CPU time allocations through grants:

- GENCI
- TGCC (France)
- CINES (France)
- PRACE

Outline

- Spin-orbit coupling in BaNiS₂
- Spin-orbit + Dirac
- Monolayer

Electronic structure of BaNiS₂ (GGA+U

Electronic structure of BaNiS₂ (GGA+U+SOC)

SOC split bands

Usually in crystals with broken inversion symmetry with spin polarized bands

<u>BIA: Bulk Inversion Asymmetry</u> (non-centrosymmetric e.g. GaAs) Dresselhaus band splitting

SIA: Surface Inversion Asymmetry (e.g. heterostructures) Rashba band splitting

Rashba band splitting

Rashba Hamiltonian:
$$H_R = \frac{p^2}{2m} - \boldsymbol{\sigma} \cdot \alpha_R \hat{\boldsymbol{z}} \times \boldsymbol{p}$$

Rashba parameters

Parabolic bands: $\epsilon^+ - \epsilon^- = \alpha_{\mathsf{R}} k$

 α_R : Rashba coupling k_R : Rashba wave vector $\Delta \epsilon$: Rashba splitting

Systems with large Rashba split

Sample	ko	ER	α _R
Surface state			
Au(111)	0.012	2.1	0.33
Bi(111)	0.05	14	0.55
1/3 ML Bi on Ag surface alloy	0.13	200	3.05
Interface			
InGaAs/InAlAs	0.028	<1	0.07
QW state			
Pb thin film (6-22 ML)	0.035	≲10	0.04
Bi thin film (7-40 BL)	-	-	-
1 ML Bi on Cu	N/A	N/A	2.5
Bulk			
BiTel	0.052	100	3.8

Ishikawa et al. (2011)

All these systems contain heavy elements and are bulk or surface inversion asymmetric (BIA or SIA)

Rashba splitting at R point

Comparison with known literature

Sample	ko	ER	α_{R}
Surface state			
Au(111)	0.012	2.1	0.33
Bi(111)	0.05	14	0.55
1/3 ML Bi on Ag surface alloy	0.13	200	3.05
Interface			
InGaAs/InAIAs	0.028	<1	0.07
QW state			
Pb thin film (6-22 ML)	0.035	≲10	0.04
Bi thin film (7-40 BL)	-	-	-
1 ML Bi on Cu	N/A	N/A	2.5
Bulk			
BiTel	0.052	100	3.8
$BaNiS_2$	0.040	150	0.25

Note that $(Z_{Bi}/Z_{Ni})^4 \sim 100$

One would have expected spin-orbit effects in BaNiS₂ two orders of magnitude smaller!

^{9/9/19}

Hidden spin polarization in inversion-**symmetric** bulk crystals

Hidden spin polarization in inversion-**symmetric** bulk crystals

Local Inversion Asymmetry (LIA) counts as well!

Non-symmorphic symmetry and SOC effects

spin degeneracy +
orbital degeneracy

 $|\psi_1^{\pm}\rangle, \, |\psi_2^{\pm}\rangle$

hidden spin-chirality of Bloch states

Dirac cones with SOC?

 $\label{eq:michele} Michele \mbox{ Casula} \\ BaNiS_2 \mbox{ as possible } Z2 \mbox{ topolocical insulator} \\$

Dirac cones with SOC?

Massive Dirac cones

$\label{eq:michele} Michele \ Casula \\ BaNiS_2 \ as \ possible \ Z2 \ topological \ insulator$

Massive Dirac cones

$\label{eq:michele} Michele \ Casula \\ BaNiS_2 \ as \ possible \ Z2 \ topological \ insulator$

9/9/19

Product over the time reversal invariant momenta

$\label{eq:michele} Michele \ Casula \\ BaNiS_2 \ as \ possible \ Z2 \ topological \ insulator$

If $v=1 \rightarrow Z2$ topological insulator

$\label{eq:michele} Michele \ Casula \\ BaNiS_2 \ as \ possible \ Z2 \ topolocical \ insulator$

9/9/19

Conclusions

- Presence of Dirac cones made of d orbitals lying at the Fermi level
- Very large Rashba splitting
- Monolayer can become a Z2 topological insulator for some value of the lattice parameter

PERSPECTIVES

- Feasibility study
- Interplay between correlation, topology and spin properties
- Other ways to open the gap?

References

- Linear behavior of the optical conductivity and incoherent charge transport in BaCoS₂, D. Santos-Cottin, Y. Klein, Ph. Werner, T. Miyake, L. de' Medici, A. Gauzzi, R. P. S. M. Lobo, and M. Casula, *Physical Review Materials* 2, 105001 (2018).
- Importance of nonlocal electron correlation in the BaNiS₂ semimetal from quantum oscillations studies, Yannick Klein, Michele Casula, David Santos-Cottin, Alain Audouard, David Vignolles, Gwendal Fève, Vincent Freulon, Bernard Plaçais, Marine Verseils, Hancheng Yang, Lorenzo Paulatto, and Andrea Gauzzi, *Physical Review B* 97, 075140 (2018).
- Rashba coupling amplification by a staggered crystal field, David Santos-Cottin, Michele Casula, Gabriel Lantz, Yannick Klein, Luca Petaccia, Patrick Le Févre, François Bertran, Evangelos Papalazarou, Marino Marsi, and Andrea Gauzzi, *Nature Communications* 7, 11258 (2016).
- Anomalous metallic state in quasi-2D BaNiS2, David Santos-Cottin, Andrea Gauzzi, Marine Verseils, Benoit Baptiste, Gwendal Feve, Vincent Freulon, Bernard Plaçais, Michele Casula, and Yannick Klein, *Phys. Rev. B* **93**, 125120 (2016).