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Outline

§ Spin-orbit coupling in BaNiS2

§ Spin-orbit + Dirac

§ Monolayer
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Electronic structure of BaNiS2 (GGA+U+SOC)
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SOC split bands
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BIA: Bulk Inversion Asymmetry (non-centrosymmetric e.g. GaAs)
Dresselhaus band splitting

SIA: Surface Inversion Asymmetry
(e.g. heterostructures)
Rashba band splitting

Usually in crystals with broken inversion symmetry 
with spin polarized bands
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Rashba band splitting
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Rashba Hamiltonian:    !" = $%
&' − ) * +",- × /

Sinova et al. (2004)

Spin-chiral polarized states:
0 = ) * / ×1- = ±1

Rashba spinors:
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Rashba parameters
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aR: Rashba coupling
kR: Rashba wave vector
De: Rashba splitting

Parabolic bands:
e+- e- = aR kDe

kR
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Systems with large Rashba split
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Ishikawa et al. (2011)

All these systems contain heavy elements 
and are bulk or surface inversion asymmetric (BIA or SIA)
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wave vector (Å-1) 

Δε

Rashba splitting at R point
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• kR=0.04 Å-1

• Rashba splitting: De=150 meV
• Rashba coupling: aR=0.25 eV Å
→ very large values!

Conduction bands

Valence bands
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Comparison with known literature
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BaNiS2   0.040    150    0.25

Note that (ZBi/ZNi)4 ~ 100
One would have expected spin-orbit effects in BaNiS2 two orders of magnitude smaller! 
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Hidden spin polarization 
in inversion-symmetric bulk crystals 
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Zhang et al. (2014)
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Local Inversion Asymmetry (LIA) counts as well!

Hidden spin polarization 
in inversion-symmetric bulk crystals 
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Zhang et al. (2014)
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Non-symmorphic symmetry and SOC effects
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spin degeneracy + 
orbital degeneracy

Without SOC

E

Gliding plane:

r1

r2

With SOC

Local Inversion Asymmetry

Ez~1.4 V Å: huge crystal field!

→ Rashba coupling enhancement
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hidden spin-chirality of Bloch states
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Opposite spin chiralities:
• Degenerate in k-space
• Separated in real space
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Dirac cones with SOC?
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G5
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Dirac cones with SOC?
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G5
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Massive Dirac cones
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G5
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Massive Dirac cones
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G5

18 meV!

Michele Casula
BaNiS2 as possible Z2 topological insulator



Parity analysis
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G5
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Parity analysis
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Most insulators are conventional insulators. In order to
find topological insulators experimentally, it is necessary to
develop criteria for recognizing them from their bulk band
structure. Clearly, a necessary condition is the existence of a
bulk energy gap which owes its existence to the spin-orbit
interaction. However, evaluating the Z2 invariants for a given
band structure is, in general, a difficult problem. To date,
three general approaches have been used.

!1" One powerful approach is to exploit adiabatic conti-
nuity to a Hamiltonian which has extra symmetry. We used
this method to identify the quantum spin-Hall phase in
graphene9,10 by arguing that the Hamiltonian for graphene is
adiabatically connected to a Hamiltonian in which the spin Sz
is conserved. With this extra conservation law, the system
can be characterized by a spin Chern number, which de-
scribes the quantized spin-Hall conductivity.20,21 The Z2 in-
variant can then be identified with the parity of the spin
Chern number. In the presence of Sz nonconserving terms
!which are inevitably present", the spin Chern number loses
its meaning.22 However, the Z2 invariant retains its value and
characterizes the quantum spin-Hall phase.

Adiabatic continuity can also be used to establish that a
material is a band insulator if an adiabatic path can be found
which connects the material to an “atomic” limit. Moreover,
it can be argued that the Z2 invariant changes at an appropri-
ate quantum phase transition, where the bulk energy gap
goes to zero.12,14 In general, this approach requires a continu-
ous path to be found which connects the Hamiltonian in
question to a known phase.

!2" It is also possible to evaluate the Z2 invariant directly
with the knowledge of the Bloch wave functions for the oc-
cupied energy bands. In Ref. 22, we established a formula
for the invariant in terms of a Brillouin-zone integral. This is
analogous to the calculation of the Chern number as an inte-
gral of the gauge invariant Berry’s curvature.5,23 However,
unlike the Chern invariant, the integral for the Z2 invariant
also involves the Berry’s potential and requires a gauge in
which the wave functions are globally continuous. Since
time-reversal symmetry requires the Chern invariant to van-
ish, a globally continuous gauge is guaranteed to exist. How-
ever, finding a continuous gauge is not always simple.

!3" A third approach is to characterize the zeros of Pfaff-
ian function introduced Ref. 10. Though the Pfaffian is not
gauge invariant, its zeros can be determined without speci-
fying a continuous gauge. While this approach is tedious
!especially in three dimensions", it has been successfully
implemented by Murakami24 to show that two-dimensional
bismuth bilayers realize a quantum spin-Hall phase.

In this paper, we will show that the presence of inversion
symmetry greatly simplifies the problem of identifying the Z2
invariants. We show that the invariants can be determined
from the knowledge of the parity of the occupied band eigen-
states at the eight !or four in two dimensions" time-reversal
invariant momenta !i in the Brillouin zone. Specifically, we
will show that the Z2 invariants are determined by the quan-
tities

"i = #
m=1

N

#2m!!i" . !1.1"

Here, #2m!!i"= ±1 is the parity eigenvalue of the 2mth occu-
pied energy band at !i, which shares the same eigenvalue
#2m=#2m−1 with its Kramers degenerate partner. The product
involves the 2N occupied bands. The Z2 invariant $=0,1,
which distinguishes the quantum spin-Hall phase in two di-
mensions and the strong topological insulator in three dimen-
sions, is then given by the product of all the "i’s,

!− 1"$ = #
i

"i. !1.2"

The other three “weak” topological invariants in three di-
mensions are also determined by "i. Since the parity eigen-
values #n!!i" are tabulated in the band theory literature, this
allows us to identify inversion symmetric topological insu-
lating materials. Moreover, exploiting adiabatic continuity
allows us to identify topological insulators which do not
have inversion symmetry but are adiabatically connected to
materials which have inversion symmetry.

Applying the above approach, we predict that the follow-
ing narrow gap semiconductors are strong topological insu-
lators: !1" the alloy Bi1−xSbx, which is semiconducting for
0.07%x%0.22, !2" &-Sn and HgTe under uniaxial strain, and
!3" the alloy Pb1−xSnxTe under uniaxial strain for x$xc in
the vicinity of the band inversion transition. The materials
!2" and !3" were suggested by Murakami et al.25 as candi-
dates for spin-Hall insulators. Those authors argued that
those materials share a large spin-Hall conductivity, as cal-
culated by a Kubo formula. Our analysis of these materials is
rather different, and we will show that PbTe is a conventional
insulator, despite its large spin-Hall conductivity, while
strained &-Sn and HgTe are topological insulators.

In Sec. II, we will present an expanded discussion of our
formulation of the Z2 invariants. Then, in Sec. III, we will
derive Eqs. !1.1" and !1.2" for problems with inversion sym-
metry. In Sec. IV, we will apply our method to a class of four
band tight-binding models, which includes the graphene
model as well as the three-dimensional !3D" model intro-
duced in Ref. 15. In Sec. V, we will apply Eqs. !1.1" and
!1.2" to deduce the Z2 invariants of several real materials
based on their known band structures. Readers uninterested
in the technical details can skip directly to Sec. V to read
about these applications. Finally, in Sec. VI, we will con-
clude with a brief discussion of the experimental implica-
tions for the topological insulating phases.

II. Z2 INVARIANTS IN TWO AND THREE DIMENSIONS

In this section, we will review our formulation of the
topological insulating phases. We begin in Sec. II A by de-
fining the time-reversal polarization. In Sec. II B, we develop
the Z2 characterization of a band structure as a topological
property of the occupied Bloch wave functions. In Sec. II C,
we show how the Z2 invariants determine the surface-state
spectrum. In Sec. II C, we consider a more general formula-
tion of the Z2 invariant as a sensitivity of a bulk crystal to
boundary conditions.
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this method to identify the quantum spin-Hall phase in
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scribes the quantized spin-Hall conductivity.20,21 The Z2 in-
variant can then be identified with the parity of the spin
Chern number. In the presence of Sz nonconserving terms
!which are inevitably present", the spin Chern number loses
its meaning.22 However, the Z2 invariant retains its value and
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Adiabatic continuity can also be used to establish that a
material is a band insulator if an adiabatic path can be found
which connects the material to an “atomic” limit. Moreover,
it can be argued that the Z2 invariant changes at an appropri-
ate quantum phase transition, where the bulk energy gap
goes to zero.12,14 In general, this approach requires a continu-
ous path to be found which connects the Hamiltonian in
question to a known phase.

!2" It is also possible to evaluate the Z2 invariant directly
with the knowledge of the Bloch wave functions for the oc-
cupied energy bands. In Ref. 22, we established a formula
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which the wave functions are globally continuous. Since
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allows us to identify inversion symmetric topological insu-
lating materials. Moreover, exploiting adiabatic continuity
allows us to identify topological insulators which do not
have inversion symmetry but are adiabatically connected to
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the vicinity of the band inversion transition. The materials
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those materials share a large spin-Hall conductivity, as cal-
culated by a Kubo formula. Our analysis of these materials is
rather different, and we will show that PbTe is a conventional
insulator, despite its large spin-Hall conductivity, while
strained &-Sn and HgTe are topological insulators.
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derive Eqs. !1.1" and !1.2" for problems with inversion sym-
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!1.2" to deduce the Z2 invariants of several real materials
based on their known band structures. Readers uninterested
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clude with a brief discussion of the experimental implica-
tions for the topological insulating phases.
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1S phase are dominated exclusively by the d electrons. With an
applied strain, the electronic state can experience a significant
change. For monolayer MoS2, MoSe2, MoTe2, WS2, and
WSe2, there is a topological quantum phase transition between
a QSH phase and a trivial insulating or metallic phase under the
strain field. For monolayer MoTe2, though the QSH phase can
be retained, its topological gap can be turned to a great extent.
The strain-induced tunability of the topological phase renders
them more attractive for applications in the semiconductor
industry.

II. COMPUTATIONAL METHODS

Our calculations are based on density-functional theory
(DFT), with the generalized gradient approximations (GGA)
[26] of Perdew-Burke-Ernzerhof (PBE) [27] for electron-
electron interactions, as implemented in the Vienna
ab initio simulation pack (VASP) code [28,29]. The projector
augmented wave (PAW) method [30,31] is employed in
the DFT calculations. The vacuum layer is set to 18 Å to
avoid spurious interactions between the MX2 monolayer
and its periodic images. The Brillouin zone integration is
performed with a 9×9×1k mesh for geometry optimization,
while a 17×17×1k mesh is used for self-consistent electronic
structure calculations. An energy cutoff of 500 eV is used
for the plane-wave expansion of the electronic wave function.
Geometries are fully relaxed until the force on each atom is
less than 0.01 eV/Å, and the convergence criteria for the total
energy is 10−6 eV. Phonon dispersion diagrams are obtained by
the finite displacement method, as implemented in the CASTEP
code [32,33], also employing the PBE functional.

TABLE I. The relative total energies (meV/atom) of the four
phases of monolayer MX2.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

1H 0 0 0 0 0 0
1T 280 235 172 296 258 189
1T′ 184 110 14 180 90 −29
1S 286 243 183 326 268 181

III. RESULTS AND DISCUSSION

Figure 1(a) shows the typical lattice structure of 1S-MX2
after geometry relaxation. Similar to the commonly studied
monolayer 1H-MX2, 1S-MX2 can be also viewed as a
three-layer stacking of M and X atoms, wherein M atoms
are sandwiched between layers of X atoms and each M
atom is coordinated to six X atoms [15,25]. Instead of the
six-membered rings in the honeycomb lattice, it is seen that
1S-MX2 possesses four- and eight-membered rings, motifs
that have been found at grain boundaries of 1H-MX2 [34].
In this configuration, square-octagon pairs are repeated along
the a and b axis, forming a 2D sheet which presents a square
Bravais lattice with D4h symmetry and with four M and eight
X atoms per unit cell [marked by the black lines in Fig. 1(a)].
The inversion symmetry exists in this configuration. The
equilibrium lattice constants are 6.336, 6.613, 7.055, 6.359,
6.643, and 7.105 Å for 1S-MoS2, 1S-MoSe2, 1S-MoTe2,
1S-WS2, 1S-WSe2, and 1S-WTe2, respectively. The relative
total energies of the four phases of monolayer MX2 are given
in Table I. We can see that, for all the systems studied here,
the total energies of the 1S phases are comparable to that of

FIG. 1. (Color online) Crystal structures of monolayer 1S-MX2 from (a) top and (b) side views. (c) 2D Brillouin zone of monolayer
1S-MX2 and one-dimensional (1D) projected Brillouin zone of the corresponding nanoribbon with high-symmetry points. (d) Band structures
of monolayer 1S-MoS2 and 1S-WS2 with and without SOC. The Fermi level is set to zero.
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Most insulators are conventional insulators. In order to
find topological insulators experimentally, it is necessary to
develop criteria for recognizing them from their bulk band
structure. Clearly, a necessary condition is the existence of a
bulk energy gap which owes its existence to the spin-orbit
interaction. However, evaluating the Z2 invariants for a given
band structure is, in general, a difficult problem. To date,
three general approaches have been used.

!1" One powerful approach is to exploit adiabatic conti-
nuity to a Hamiltonian which has extra symmetry. We used
this method to identify the quantum spin-Hall phase in
graphene9,10 by arguing that the Hamiltonian for graphene is
adiabatically connected to a Hamiltonian in which the spin Sz
is conserved. With this extra conservation law, the system
can be characterized by a spin Chern number, which de-
scribes the quantized spin-Hall conductivity.20,21 The Z2 in-
variant can then be identified with the parity of the spin
Chern number. In the presence of Sz nonconserving terms
!which are inevitably present", the spin Chern number loses
its meaning.22 However, the Z2 invariant retains its value and
characterizes the quantum spin-Hall phase.

Adiabatic continuity can also be used to establish that a
material is a band insulator if an adiabatic path can be found
which connects the material to an “atomic” limit. Moreover,
it can be argued that the Z2 invariant changes at an appropri-
ate quantum phase transition, where the bulk energy gap
goes to zero.12,14 In general, this approach requires a continu-
ous path to be found which connects the Hamiltonian in
question to a known phase.

!2" It is also possible to evaluate the Z2 invariant directly
with the knowledge of the Bloch wave functions for the oc-
cupied energy bands. In Ref. 22, we established a formula
for the invariant in terms of a Brillouin-zone integral. This is
analogous to the calculation of the Chern number as an inte-
gral of the gauge invariant Berry’s curvature.5,23 However,
unlike the Chern invariant, the integral for the Z2 invariant
also involves the Berry’s potential and requires a gauge in
which the wave functions are globally continuous. Since
time-reversal symmetry requires the Chern invariant to van-
ish, a globally continuous gauge is guaranteed to exist. How-
ever, finding a continuous gauge is not always simple.

!3" A third approach is to characterize the zeros of Pfaff-
ian function introduced Ref. 10. Though the Pfaffian is not
gauge invariant, its zeros can be determined without speci-
fying a continuous gauge. While this approach is tedious
!especially in three dimensions", it has been successfully
implemented by Murakami24 to show that two-dimensional
bismuth bilayers realize a quantum spin-Hall phase.

In this paper, we will show that the presence of inversion
symmetry greatly simplifies the problem of identifying the Z2
invariants. We show that the invariants can be determined
from the knowledge of the parity of the occupied band eigen-
states at the eight !or four in two dimensions" time-reversal
invariant momenta !i in the Brillouin zone. Specifically, we
will show that the Z2 invariants are determined by the quan-
tities

"i = #
m=1

N

#2m!!i" . !1.1"

Here, #2m!!i"= ±1 is the parity eigenvalue of the 2mth occu-
pied energy band at !i, which shares the same eigenvalue
#2m=#2m−1 with its Kramers degenerate partner. The product
involves the 2N occupied bands. The Z2 invariant $=0,1,
which distinguishes the quantum spin-Hall phase in two di-
mensions and the strong topological insulator in three dimen-
sions, is then given by the product of all the "i’s,

!− 1"$ = #
i

"i. !1.2"

The other three “weak” topological invariants in three di-
mensions are also determined by "i. Since the parity eigen-
values #n!!i" are tabulated in the band theory literature, this
allows us to identify inversion symmetric topological insu-
lating materials. Moreover, exploiting adiabatic continuity
allows us to identify topological insulators which do not
have inversion symmetry but are adiabatically connected to
materials which have inversion symmetry.

Applying the above approach, we predict that the follow-
ing narrow gap semiconductors are strong topological insu-
lators: !1" the alloy Bi1−xSbx, which is semiconducting for
0.07%x%0.22, !2" &-Sn and HgTe under uniaxial strain, and
!3" the alloy Pb1−xSnxTe under uniaxial strain for x$xc in
the vicinity of the band inversion transition. The materials
!2" and !3" were suggested by Murakami et al.25 as candi-
dates for spin-Hall insulators. Those authors argued that
those materials share a large spin-Hall conductivity, as cal-
culated by a Kubo formula. Our analysis of these materials is
rather different, and we will show that PbTe is a conventional
insulator, despite its large spin-Hall conductivity, while
strained &-Sn and HgTe are topological insulators.

In Sec. II, we will present an expanded discussion of our
formulation of the Z2 invariants. Then, in Sec. III, we will
derive Eqs. !1.1" and !1.2" for problems with inversion sym-
metry. In Sec. IV, we will apply our method to a class of four
band tight-binding models, which includes the graphene
model as well as the three-dimensional !3D" model intro-
duced in Ref. 15. In Sec. V, we will apply Eqs. !1.1" and
!1.2" to deduce the Z2 invariants of several real materials
based on their known band structures. Readers uninterested
in the technical details can skip directly to Sec. V to read
about these applications. Finally, in Sec. VI, we will con-
clude with a brief discussion of the experimental implica-
tions for the topological insulating phases.

II. Z2 INVARIANTS IN TWO AND THREE DIMENSIONS

In this section, we will review our formulation of the
topological insulating phases. We begin in Sec. II A by de-
fining the time-reversal polarization. In Sec. II B, we develop
the Z2 characterization of a band structure as a topological
property of the occupied Bloch wave functions. In Sec. II C,
we show how the Z2 invariants determine the surface-state
spectrum. In Sec. II C, we consider a more general formula-
tion of the Z2 invariant as a sensitivity of a bulk crystal to
boundary conditions.
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tities

"i = #
m=1

N

#2m!!i" . !1.1"

Here, #2m!!i"= ±1 is the parity eigenvalue of the 2mth occu-
pied energy band at !i, which shares the same eigenvalue
#2m=#2m−1 with its Kramers degenerate partner. The product
involves the 2N occupied bands. The Z2 invariant $=0,1,
which distinguishes the quantum spin-Hall phase in two di-
mensions and the strong topological insulator in three dimen-
sions, is then given by the product of all the "i’s,

!− 1"$ = #
i

"i. !1.2"

The other three “weak” topological invariants in three di-
mensions are also determined by "i. Since the parity eigen-
values #n!!i" are tabulated in the band theory literature, this
allows us to identify inversion symmetric topological insu-
lating materials. Moreover, exploiting adiabatic continuity
allows us to identify topological insulators which do not
have inversion symmetry but are adiabatically connected to
materials which have inversion symmetry.

Applying the above approach, we predict that the follow-
ing narrow gap semiconductors are strong topological insu-
lators: !1" the alloy Bi1−xSbx, which is semiconducting for
0.07%x%0.22, !2" &-Sn and HgTe under uniaxial strain, and
!3" the alloy Pb1−xSnxTe under uniaxial strain for x$xc in
the vicinity of the band inversion transition. The materials
!2" and !3" were suggested by Murakami et al.25 as candi-
dates for spin-Hall insulators. Those authors argued that
those materials share a large spin-Hall conductivity, as cal-
culated by a Kubo formula. Our analysis of these materials is
rather different, and we will show that PbTe is a conventional
insulator, despite its large spin-Hall conductivity, while
strained &-Sn and HgTe are topological insulators.

In Sec. II, we will present an expanded discussion of our
formulation of the Z2 invariants. Then, in Sec. III, we will
derive Eqs. !1.1" and !1.2" for problems with inversion sym-
metry. In Sec. IV, we will apply our method to a class of four
band tight-binding models, which includes the graphene
model as well as the three-dimensional !3D" model intro-
duced in Ref. 15. In Sec. V, we will apply Eqs. !1.1" and
!1.2" to deduce the Z2 invariants of several real materials
based on their known band structures. Readers uninterested
in the technical details can skip directly to Sec. V to read
about these applications. Finally, in Sec. VI, we will con-
clude with a brief discussion of the experimental implica-
tions for the topological insulating phases.

II. Z2 INVARIANTS IN TWO AND THREE DIMENSIONS

In this section, we will review our formulation of the
topological insulating phases. We begin in Sec. II A by de-
fining the time-reversal polarization. In Sec. II B, we develop
the Z2 characterization of a band structure as a topological
property of the occupied Bloch wave functions. In Sec. II C,
we show how the Z2 invariants determine the surface-state
spectrum. In Sec. II C, we consider a more general formula-
tion of the Z2 invariant as a sensitivity of a bulk crystal to
boundary conditions.
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1S phase are dominated exclusively by the d electrons. With an
applied strain, the electronic state can experience a significant
change. For monolayer MoS2, MoSe2, MoTe2, WS2, and
WSe2, there is a topological quantum phase transition between
a QSH phase and a trivial insulating or metallic phase under the
strain field. For monolayer MoTe2, though the QSH phase can
be retained, its topological gap can be turned to a great extent.
The strain-induced tunability of the topological phase renders
them more attractive for applications in the semiconductor
industry.

II. COMPUTATIONAL METHODS

Our calculations are based on density-functional theory
(DFT), with the generalized gradient approximations (GGA)
[26] of Perdew-Burke-Ernzerhof (PBE) [27] for electron-
electron interactions, as implemented in the Vienna
ab initio simulation pack (VASP) code [28,29]. The projector
augmented wave (PAW) method [30,31] is employed in
the DFT calculations. The vacuum layer is set to 18 Å to
avoid spurious interactions between the MX2 monolayer
and its periodic images. The Brillouin zone integration is
performed with a 9×9×1k mesh for geometry optimization,
while a 17×17×1k mesh is used for self-consistent electronic
structure calculations. An energy cutoff of 500 eV is used
for the plane-wave expansion of the electronic wave function.
Geometries are fully relaxed until the force on each atom is
less than 0.01 eV/Å, and the convergence criteria for the total
energy is 10−6 eV. Phonon dispersion diagrams are obtained by
the finite displacement method, as implemented in the CASTEP
code [32,33], also employing the PBE functional.

TABLE I. The relative total energies (meV/atom) of the four
phases of monolayer MX2.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

1H 0 0 0 0 0 0
1T 280 235 172 296 258 189
1T′ 184 110 14 180 90 −29
1S 286 243 183 326 268 181

III. RESULTS AND DISCUSSION

Figure 1(a) shows the typical lattice structure of 1S-MX2
after geometry relaxation. Similar to the commonly studied
monolayer 1H-MX2, 1S-MX2 can be also viewed as a
three-layer stacking of M and X atoms, wherein M atoms
are sandwiched between layers of X atoms and each M
atom is coordinated to six X atoms [15,25]. Instead of the
six-membered rings in the honeycomb lattice, it is seen that
1S-MX2 possesses four- and eight-membered rings, motifs
that have been found at grain boundaries of 1H-MX2 [34].
In this configuration, square-octagon pairs are repeated along
the a and b axis, forming a 2D sheet which presents a square
Bravais lattice with D4h symmetry and with four M and eight
X atoms per unit cell [marked by the black lines in Fig. 1(a)].
The inversion symmetry exists in this configuration. The
equilibrium lattice constants are 6.336, 6.613, 7.055, 6.359,
6.643, and 7.105 Å for 1S-MoS2, 1S-MoSe2, 1S-MoTe2,
1S-WS2, 1S-WSe2, and 1S-WTe2, respectively. The relative
total energies of the four phases of monolayer MX2 are given
in Table I. We can see that, for all the systems studied here,
the total energies of the 1S phases are comparable to that of

FIG. 1. (Color online) Crystal structures of monolayer 1S-MX2 from (a) top and (b) side views. (c) 2D Brillouin zone of monolayer
1S-MX2 and one-dimensional (1D) projected Brillouin zone of the corresponding nanoribbon with high-symmetry points. (d) Band structures
of monolayer 1S-MoS2 and 1S-WS2 with and without SOC. The Fermi level is set to zero.
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• Presence of Dirac cones made of d orbitals lying at the Fermi level
• Very large Rashba splitting
• Monolayer can become a Z2 topological insulator for some value of the 

lattice parameter

PERSPECTIVES
• Feasibility study
• Interplay between correlation, topology and spin properties
• Other ways to open the gap?



References

9/9/19 27

• Linear behavior of the optical conductivity and incoherent charge transport in BaCoS2, D.
Santos-Cottin, Y. Klein, Ph. Werner, T. Miyake, L. de' Medici, A. Gauzzi, R. P. S. M. Lobo, and
M. Casula, Physical Review Materials 2, 105001 (2018).

• Importance of nonlocal electron correlation in the BaNiS2 semimetal from quantum
oscillations studies, Yannick Klein, Michele Casula, David Santos-Cottin, Alain Audouard,
David Vignolles, Gwendal Fève, Vincent Freulon, Bernard Plaçais, Marine Verseils, Hancheng
Yang, Lorenzo Paulatto, and Andrea Gauzzi, Physical Review B 97, 075140 (2018).

• Rashba coupling amplification by a staggered crystal field, David Santos-Cottin, Michele
Casula, Gabriel Lantz, Yannick Klein, Luca Petaccia, Patrick Le Févre, François Bertran,
Evangelos Papalazarou, Marino Marsi, and Andrea Gauzzi, Nature Communications 7, 11258
(2016).

• Anomalous metallic state in quasi-2D BaNiS2, David Santos-Cottin, Andrea Gauzzi, Marine
Verseils, Benoit Baptiste, Gwendal Feve, Vincent Freulon, Bernard Plaçais, Michele Casula,
and Yannick Klein, Phys. Rev. B 93, 125120 (2016).

Michele Casula
From Dirac to Hund’s Physics: BaNi(Co)S2


