

Intérêt des transitions résonnantes en spectroscopie pour les plasmas froids atmosphériques: diagnostic des ondes d'ionisations et de micro-cavités

Iséni S., Khacef A., Michaud R. et Dussart R.

Groupe de Recherches sur l'Énergétique des Milieux Ionisés UMR7344–14, rue d'Issoudun, 45067 Orléans, France.

Section 2.2 – 25^{ème} Congrès Général de la Société Française de Physique, 2019, Nantes, France

Radiant matter: the first contact...

JREF

First phenomenological descriptions of light emission from artificially ionized gases: "radiant matter"*

Spectroscopy and line profile analysis

Types of line profile broadening*

Gaussian	Lorentzian		
Instrumental	Resonant		
Doppler	Van der Waals		
	Stark		
	Natural		

Neutral gas temperature T_g in MicroHollow Cathod Discharge

Source – Silicon based MHCD

- Micro scale reactor
 Typ. Features:
 - 200 760 Torr,
 - 2-400 µA,
 - 7 100 mW,
- 2.5 .10⁻⁷ cm⁻³.
 // He, Ar and N₂.

R. Michaud, et. al, PSST 27, 025005 (2018) C.H. Sillerud, et. al., Phys. of Plas. 24, 033502 (2017).

ラRとト

Experimental diagnostic setup

Aberration-free image of the MHCD

OES – Atomic line profile analysis

DC MHCD in Ar and He – T

// Spectral analysis

- K(0,1)= 1.04* instead of 0.96⁺
- Van der Waals corrected

Neutral gas temperature

- T_g(He) << T_g(Ar)
- $T_g(He) \approx cst. \rightarrow thermal dif.$
- $T_g(Ar)$ rises with I_{MHCD}

// Thermal damage?

*A.V. Pipa, et. al. APL 106, 244104 (2015) *S. Djurović and N. Konjević, PSST 18, 035011 (2009)

T_{_} within and out the MHCD

g

Hydrodynamics of Guided Ionization Waves

Experimental setup, $T_{rot} \approx T_{c}$

Atmospheric pressure plasma jet generating ionization waves

FREF

Channeling

Line profile analysis: He 728.3nm

Method and assumptions

$$w_{R} = K(0,1) \frac{r_{e}}{\pi} \sqrt{\frac{g_{G}}{g_{R}}} \lambda_{0}^{2} \lambda_{R} f_{R} N_{He}$$

Table I. Calculated FWHM (w_{-}) of each broadening mechanism contributing to the line shape of the He transition $(3s^{1}S_{0} \rightarrow 2p^{1}P_{1})$ are determined according to Djurović and Konjević²⁹ assuming T_{g} =320 K at 1013 hPa. (unit: 10⁻³ nm)

Lorentzian profile			Gaussian profile		
$w_{ m natural}$	$w_{ m S}$	$w_{\rm vdw}$	$w_{ m R}$	$w_{ m D}$	$\bar{w}_{\rm inst.}$
0.5 ± 0.2	$0.6 \pm 0.2^{\mathrm{a}}$	42 ± 5	94 ± 4	4.4 ± 0.1	25 ± 1

^a Calculated for an electron temperature $T_e=2 \text{ eV}$ and a maximum electron density $n_e=10^{14}/\text{cm}^3$.

 $W_{Lorentzian} \approx W_R + W_{vdw}$

 $W_{Lorentzian} \propto T_a \cdot N_{Helium} \Leftrightarrow p_{Helium}$

 $W_{\text{Lorentzian}} \rightarrow \text{hydrodynamics parameters}$

Results: IW flow actions & air fraction

Iseni S, Pichard C and Khacef A, 2019, Monitoring hydrodynamic effects in helium atmospheric pressure plasma jet by resonance broadening emission line, Applied Physics Letters, 115, 3, in press.

Iséni S. – 25ème Congrès Général SFP, 2019, Nantes, France

FREM

Concluding remarks

OES atomic resonance broadening at high pressure

- Non-intrusive, time & space revolved method
- Neutral gas temperature, T_g
 - Iseni S, Michaud R, Lefaucheux P, Sretenović G B, Gathen V S der and Dussart R 2019 On the validity of neutral gas temperature by emission spectroscopy in microdischarges close to atmospheric pressure Plasma Sources Sci. Technol. 28 065003
 Hydrodynamics of He guided ionization waves
 - Electrohydrodynamic forces
 - In-diffusing air fraction
 - Iseni S, Pichard C and Khacef A 2019 Monitoring hydrodynamic effects in helium atmospheric pressure plasma jet by resonance broadening emission line, Applied Physics Letters, 115 in press

Intérêt des transitions résonnantes en spectroscopie pour les plasmas froids atmosphériques: diagnostic des ondes d'ionisations et de micro-cavités

Iséni S., Khacef A., Michaud R. et Dussart R.

Groupe de Recherches sur l'Énergétique des Milieux Ionisés UMR7344–14, rue d'Issoudun, 45067 Orléans, France.

Section 2.2 – 25^{ème} Congrès Général de la Société Française de Physique, 2019, Nantes, France

Source – electrical properties

Rotational temperature – $N_2(C-B)$

T_{rot} of $N_2(C-B)$ – front and side

✓ Low current → similarity
 ✓ Discrepancy between T_{rot}
 ✓ Vibrational quenching of C-state?*

- Not with v'=0
- No data in He mixture
 T_g ≠ T_{rot}

*Q. Wang, et. al., J. Phys. D: Appl. Phys. 38, 1690 (2005).
*Q. Wang, et. al., J. Phys. D: Appl. Phys. 40, 4202 (2007).
P.J. Bruggeman, et. al. PSST 23, 023001 (2014).

More time to relax \rightarrow self-pulsing ?

Reversed polarity \rightarrow anode cavity: T_{rot}

Front – 500 Torr

