

Development of a spectro-tomography diagnostic in the visible for the study of plasmas

V. Gonzalez¹, A. Escarguel¹, Y. Camenen¹, A. Poyé¹, R. Baude², P. David³

¹Aix-Marseille Université, CNRS, PIIM UMR7345, Marseille, France

² APREX Solutions, campus ARTEM, 2 allée A. Guinier 54000 Nancy, France

³ Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

SFP Nantes 2019

Cross-field ExB plasma instability

ExB plasma configuration:

- Hall thruster,
- Magnetron discharges,
- Penning gauges,
- Tokamaks...
- \rightarrow Particles drift in the ExB direction:
- →Anomalous transport coefficient in the perpendicular direction problem for the tokamaks ⁽³⁾, advantage for the thrusters ⁽³⁾
 →Need for a better undestanding of the physics.

The Mistral experiment has been created for the study of ExB instabilities

The Mistral experiment

- Created by G. Leclert and Th. Pierre,
- Electrons magnetized ; ions poorly magnetized,
- Ionizing primary electrons,
- Cylindrical symetry,
- « Stable » plasma state during several hours.

▶ L = 1.2m
 ▶ r_{plasma} = 36 mm
 ▶ 5.10⁻⁵ mbar < P < 10⁻³ mbar
 ▶ B_{solenoid} < 25 mT
 ▶ Gaz : He, Ne, Ar, Kr, Xe

The Mistral experiment: observation of regular instabilities

Flute modes around the central column with constant rotation frequency (m = $1 - v \approx a$ few. kHz)

Studying plasmas with Langmuir probes

→Simple installation: ne, Te, V_{plasma}...
 →BUT the results interpretation can be complicated
 →The probes are perturbative for the plasma.

→ Development of optical diagnostics

First step: optical tomography

→ P. David Phd

 \rightarrow Advantages of tomography:

- 2D spatial structure analysis Without hypothesis,
- Non intrusive methods.

→ Study of turbulent plasma states (no symetry)

→Validation: symetric flute $v_{mode} \approx 1 -$ →2x64 channels, $v_{acq} = 1$ MHz

Optical tomography

\rightarrow 2x64 channels, v_{acq} = 1 MHz, SiPM sensors (gain > 10⁶)

Tomography: results for a periodic structure

- \rightarrow « One shot » time evolution \rightarrow Analysis of structures without symetry
- \rightarrow BUT no spectral resolution

Spectro-tomography visible diagnostic

- 128 sensors → EMCCD camera
 + spectrometer
- Less line of sight : 49 \rightarrow 7x7 pixels

n° Line of sight

in the second second							-
1							
11 C							
11				11			
_	1					_	
	-						
							1.6
							1.4
					4		
					-	-	
						-	
						-	
1	_						
					16		
					1	-	
						-	11
							1.1
-							
-						-	
-1							
-						-	
- 1							

Spectro-tomography: results

Spectro-tomography: validation

Plasma coronal model

 \rightarrow Low density (n_e<10¹¹ cm⁻³) : $\begin{array}{l} n^{-3} : \quad n_e \ n_0 \ \left\langle \sigma \ v_{0 \to p} \right\rangle = n_p \sum_{\substack{r$ coronal model r < p: electronic collisions excitation Excited levels : radiative emission Hyp.: $n_{exc} \ll n_{fond}$ Fundamental (n_0)

Coronal model: experimental validation

\rightarrow Experiments with n_e variations (and no T_e variations !)

Spectro-tomography T_e measurement

spectro-tomography n_e measurement

Conclusion

Optical tomography

- temporal study of plasma instability
- One shot acquisition of non flute modes
- Optical spectro-tomography
 - Validation of the diagnostic
 - 2D measurement of n_e, T_e

Perspectives

- Tomography
 - Improvement of the spatial resolution
 → more lines of sight ?
 - Otical fibers \rightarrow set of mirors around the plasma
- Spectro-tomography
 - 100 kHz acquisitions with a fast camera
 - Application to edge plasmas of Tokamak
- Development of an optical diagnostic of the electric field in a plasma

Thank you for your attention

Instabilités d'un plasma en champ croisé ExB

- Force de Lorentz : $\mathbf{F} = q(\mathbf{E} + v \times \mathbf{B})$
 - **B**: confine / guide
 - E: accélération / décélération
- Dérive quand $E \perp B$:

$$\mathbf{v} = rac{\mathbf{E} imes \mathbf{B}}{\mathbf{B}^2}$$

La tomographie optique visible

Capteurs :

- 2 x 64 fibres Ø100 μm x 5 m
- 128 détecteurs SiPM
- Gain (> 10⁶, PDE > 30%) avec faibles tensions/PMTs (~ 20 to 40 V)
 - Tps. De réspone rapide <100 ps
 - v_{acq} max. = 1 MHz

Limitations :

- Bruit important (after pulse/cross talk)

→ Besoin d'ajouter la résolution spectrale
 → Spectro-tomographie visible

matrice de 8x8 détecteurs

Inversion tomographique $S_{i} = \sum_{j=0}^{N_{p}} t_{ij} \cdot e_{i}$ $\Leftrightarrow S = T \cdot E$

t_{ij} : coef. calibration, longueur de la ldv dans le ième pixel

- Système linéaire :
 - N_{equations} < N_{inconnues}
 - Système mal conditionné : de petites erreurs sur les données entraînent de grandes erreurs sur les résultats.

Régularisation de Tikhonov : min (½ (T.E – S)² + αR)
 R : fonction de régularisation

Tomography : validation of inversion code

Tomographie : résultats

Tomographie : résultats bruts

26

Instabilités par sondes de Langmuir : symétrie cylindrique

→ Utilisation de cette symétrie pour valider la tomographie : comparaison avec caméra

Low frequency instabilities : possible optical measurements...

→Strong correlation between probe and photo-diode signals

Principle of Laser Induced Fluorescence

• Measurement based on :

Excitation and emission of photons by an atom or an ion. In our case, Ar⁺ ion.

➢Doppler effect.

Level 1 to level 2 transition condition: Laser frequency = transition 1-2 frequency

Emitted fluorescence proportional to the number of excited ions (atoms)

LIF instruments

Dye Laser

- Power : 400mW at 611,5nm
- Spectral width : 0,5MHz

Multi-Channel Scaler (MCS)

The MCS allows to:

Count photons (detected by a photomultiplier).

- Add temporal resolution to measurement. Usual parameters:
- Temporal definition between 5ns et 65535s
- Between 4 et 16384 possible temporal channels.
- Up to 4 billions repetitions of measurement possible (increase S/B).

LIF on MISTRAL experiment

LIF measurements in Mistral : m=2 mode

- : ion velocity (m/s)
- : electric field (V/m)
- : mode m=2 axis

- → No whole column ExB drift
- → No clear signature of instability

[Rebont PRL 2011]

Development of a diagnostic to measure directly electric field : EFILE

- Electric field \rightarrow Emission Lyman- α of a probe H (2s) beam
- Measurement of static and/or fluctuating electric fields (vacuum or cold plasma, density 10¹¹ cm⁻³, sheaths) → OK

Project/Challenge :

- Measurement of local electric field in Mistral
- Measurement of electric field in front of ICRF IShTAR (Ion cyclotron Sheath Test Arrangement) antenna

Lamb shift

Second property of hydrogenoids :

Lamb-shift due to radiative corrections

Schematic view of the EFILE experiment

E measurement in the shadow of a limiter : principle

EFILE : results

Diagnostic EFILE in vacuum: comparison with numerical simulation FEM

Diagnostic EFILE in plasma

Formation of a plasma sheath: Electric field profile measured -in vacuum (white triangle) -in test plasma (black triangle)

Mesure d'un champ électrique statique ou fluctuant

Principe physique : interaction entre un faisceau H(2s) et un champ électrique (E, ω) \rightarrow émission Lyman- α par Stark mixing 2s, 2p_{1/2} = modification taux d'émission

profil entre les plaques en accord avec calcul numérique

Champ statique dans un plasma : taille gaine 뇌 quand densité 기

En cours : mesures RF, calibration Développement : mesures en champ magnétique (MISTRAL) Projet : mesure champ RF devant antenne ICRF chauffage plasma (Ishtar, Garching)

New configuration

Installation of 2 half-cylinders to measure radial current: each half-cylinder can be biased separately.

LIF measurements

- Measurement between r = 0 and 6 cm
- $\Delta X = 1 \text{ cm}$
- Mode frequency: 5 KHz < f_{ci}
- LIF $\Delta t : 100 \,\mu s$
- 150 000 repetitions
- Total acquisition time: 2 h for a time-resolved velocity distribution function

Axial distribution function

Modulation of mean axial velocity at the same frequency as perturbation→ possible drift waves

Results at r=5cm, ionization zone limit

Results at r=5cm

Azimuthal electric field shows: -max on rising density front -differences according to used method (change of sign for energy conservation method)

Radial electric field extrema on density fronts \rightarrow changes sign.

m=1, 2 regular modes rotating around plasma column

- Langmuir probe in the diaphragm shadow
 (V_{probe}>V_{plasma}) : n_e.
- 2 half-cylinders around the column : radial current I.
- → Observation of rotating structures (v = a few kHz
 - sonification for live control)

[Jaeger POP 2009]

Fast camera results (end view of the plasma)

Simon-Hoh instability CSHI (Phys. Fluids 1963) ExB drift:

- Electrons : $v_{e\theta}$
- Friction forces (e-neutrals)
- \rightarrow lons slowed down:

 $v_{i\theta} < v_{e\theta}$

- \rightarrow Charge separation: E_1
- → Rotation frequency instability:

$$\upsilon_{spoke} = \frac{1}{\pi R_0} \sqrt{\frac{eE_r L_n}{m_i}} \qquad L_n = \frac{n_e}{\frac{\partial n_e}{\partial r}} \qquad \upsilon_{spoke} \propto \sqrt{B} \qquad E_r \propto B$$

Smolyakov PPCF (2017) ; POWIS POP (2018) [Hoh; Simon Phys. Fluids 1963 ; Jaeger PhD 2009]

M=1 mode : radial evolution of the amplitude of the fluctuation

→10 % fluctuations inside the plasma column →100 % fluctuations in the shadow of the limiteur

Rotation frequency of a m=1 spoke vs M_{ion}

 \rightarrow Difficult to overlap pressure ranges for \neq M_{ion}

→ Possible transition m=1 to m=2 mode, when P increases : **the controlling parameter is not clear**. → Role of E_r and grad(n_{e}) ?

Aix*Marseille université Cnrs

Spatial/time resolved study of a m=1 spoke in argon

- Synchronized Langmuir probe (perturbating...)
- r_{plasma} = 36 mm \rightarrow the 2 first curves are inside the plasma column (red/blue)
- the 3 other curves are in the shadow of the limiteur (magenta/black/cyan)
- \rightarrow \approx Rigid body rotation
- → Phase shift (V_{plasma} /ne) $\approx \pi/2$ in the shadow of the limiteur

Time evolution of n_e and V_{plasma}

The rotating spoke is in front of the probe at $t = 150 \ \mu s$

 \rightarrow < E_r > is oriented outward... \rightarrow But E_r(r) is oriented inward inside the spoke, outward otherwise

Radial electric field E_r

 \rightarrow Except in the center, inside the spoke, the radial electric field is oriented inward.

Spoke rotation frequency = f(B)

→Linear increase until B = 180 G – then, decrease with a different slope.

 \rightarrow Observation of a maximum at 180 G.

→Coherent with CSHI ?

Spoke rotation frequency = f(B)

→Not coherent with CSHI theory. But do E_r and L_n change when B increases ?

 \rightarrow Detailed study of 3 cases at 160 G, 180 G and 205 G.

Comparison of ne(r)

\rightarrow similar radial behaviors

Comparison of V_{plasma}(r)

Aix*Marseille

E_r estimation from the linear fit of V_{plasma}(r)

-0.5 -1 -1.5 Vplasma (V) -2.5 -3 : exp. : linear fit -3.5 10 20 30 40 50 0 60 70 r (mm)

 $B = 160 \text{ G} - \text{E}_{r} = -48.0566 \text{ V/m}$

E_r estimation from the linear fit of V_{plasma}(r)

→ E_r and L_n do not seem to play a key role in v = f(B)→ CSHI : E_r should increase with B.... ⁵⁷ SFP Nantes 2019

Evolution of ion velocity in a m=1 spoke by LIF

Electric field in a m=1 spoke by LIF

 \rightarrow E_r measured by LIF is coherent with probe measurements

N. Claire POP (2018)

L'expérience MISTRAL

1 eV < T_e < 4 eV</p>
10¹⁴ m⁻³ < N_e < 5.10¹⁶ m⁻³ $T_{Ar neutral} = 300 \text{ K}$ $T_{Ar ion} = 1100 \text{ K}$ E_{primary electrons} ≈ 40 eV

- $\succ \rho_e = 3 \text{ mm}$
- $\rightarrow \rho_{\rm i}$ = 25 mm (He ; 160 G)
 - = 56 mm (Ne; 160 G)
 - = 80 mm (Ar ; 160 G)
 - = 146 mm (Xe ; 160 G)