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Plan of talk

I Cavity polaritons
I Solitons and vortex streets in resonantly pumped polariton

quantum fluid
I The story of domain wall propagation in bistable regime
I Solitons stability and vortex street formation
I Preliminary experimental results

I 2D Quantum turbulence in polariton condensates
I Incompressible kinetic energy spectrum
I Fractal properties of quantum vortex clusters
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Exciton-polaritons - particles of fluid light

Exciton-exciton non-linear repulsive interaction
Due to photon component: excitation by laser (including SLM)
and luminescence detection

Non-linear Schrodinger equation (Gross-Pitaevskii Equation, GPE):

i~
dψ

dt
= − ~2

2m
∆ψ + g|ψ|2ψ︸ ︷︷ ︸

Repulsion

− iΓ0ψ︸ ︷︷ ︸
Losses

+S · exp(−iωpt)︸ ︷︷ ︸
Laser Pump
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Bistability in driven-dissipative GPE

i~
dψ

dt
= − ~2

2m
∆ψ + g|ψ|2ψ︸ ︷︷ ︸

Repulsion

− iΓ0ψ︸ ︷︷ ︸
Losses

+S · exp(−iωpt)︸ ︷︷ ︸
Laser Pump

I Repulsion results in blueshift
I At upper bistability branch polaritons are in phase with Laser
I At lower branch polaritons have ≈ π phase shift
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Solitons in the corridor with pump walls
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Domain wall propagation in free space

Critical support:

Sc =
2(~ωp)

3/2

3
√

3g1/2

The domain wall velocity can be found as

v =
∂n

∂t

∆x

∆n
and

∂ψ

∂t
=
S − Sc
i~

→ v ≈
√
n0
S − Sc

~
ξ

n0

Domain wall moves left (S < Sc) or right (S > Sc) depending on
the value of the support S.

6 / 17



Development of snake instability

• The dispersion Im{E(ky)} defines the intervortex distance:
π

Dintervortex.
= kmax

y

• Number of unperturbed solitons = number of peaks in dispersion
• Bonding and anti-bonding ”orbitals” in bogolon ”molecules”
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Phase diagram Pump/Support
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The solitons can be used to solve the maze

I Soliton goes out of a dead-end. This is also domain wall
motion but along ”Y direction”

I One sees the periodical pattern along the solitons in long
corridors. This is again a modulation instability

I Oscillations are stabilized by already developed instability
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... the really big maze
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Vortex streets guided by dislocations

? - High dens. ?? - Bist. loop ? ? ? - Linear
Preliminary experimental data by LKB, Sorbonne Universite, CNRS
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2D quantum turbulence
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Main issues of 2D quantum turbulence

I In classical 3D turbulence the direct energy cascade exists and
Incompressible Kinetic Energy (IKE) spectrum E(k) ∝ k−5/3

(Kolmogorov exponent)
I In 2D quantum turbulence existence and direction of the

cascade are not a closed questions
I Are cavity polaritons suitable quantum fluid system to

experimentally study the energy cascade?
I Their favorable features are control of wave function by SLM

and possibility to fully reconstruct phase and amplitude of
wave function

Here we study conservative case (no Γ term in GPE) to trace
long-time evolution inaccessible at present level:

i~
∂ψ

∂t
=

[
−~2∆

2m
+ V (t) + g |ψ|2

]
ψ
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Stirring by moving potential V (t)

IKE spectra for all vortices and for clustered
vortices
k−1 is for single vortex spectrum
k−5/3 is seen for clustered vortices
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Fractal nature of vortex clusters

Example of box counting
for clustered vortices a)
and all vortices b)

Fractional Minkowski
dimension lnN(ε)

ln(1/ε)

Box count N vs IKE spectrum E(k)

The region of fractional dimension
matches with region -5/3 exponent in

IKE spectrum
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Time dynamics of IKE spectrum formation

IKE spectra at various time
moments

Ratio of energy stored at long
wavelengths and short
wavelengths
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Thanks for your attention!

17 / 17


