

High-precision mid-infrared spectroscopy with a widely tuneable SI-traceable optical-frequency-comb-stabilised QCL

DBA Tran, R Santagata, B Argence, O Lopez, SK Tokunaga, F Wiotte, H Mouhamad, A Goncharov, M Abgrall, Y Le Coq, H Alvarez-Martinez, R Le Targat, WK Lee, D Xu, P-E Pottie, A Amy-Klein, B Darquié

Laboratoire de Physique des Lasers, CNRS - Université Paris 13 LNE-SYRTE, Observatoire de Paris, CNRS-UPMC Univ Paris 6

Systèmes de Référence Temps-Espace

25^e Congrès Général de la Société Française de Physique

Nantes, July 8-12, 2019

Outline

- Motivation: precise spectroscopic measurements with molecules
- QCL stabilization allowing wide tuneability
- High-precision spectroscopic measurements
- Summary / Perspectives

Precision measurements with molecules

Complementary to measurements in atoms for precision tests of fundamental physics:

measure constants	m_e/m_p (Schiller, Hilico, Ubachs – HD ⁽⁺⁾ , H ₂ ⁽⁺⁾) k_B (Gianfrani, H ₂ ¹⁸ O, CO ₂ - LPL, NH ₃),
measure their variations in time	α (Ye, OH) - m_e/m_p (Truppe/Hinds/Tarbutt, CH - Bethlem, NH ₃ - LPL, SF ₆)
test fundamental symmetries	parity & time-reversal symmetry (eEDM): Hinds (YbF), Cornell/Ye (HfH ⁺), DeMille/Doyle/Gabrielse (ThO) parity symmetry: DeMille (BaF), LPL (chiral species),
QED tests, 5 th force	W. Ubachs (H ₂ , HD ⁺),
test the symmetrization postulate	Tino, (O ₃ , CO ₂ , NH ₃ ,)

- Many are based on high-resolution spectroscopy, often in the mid-infrared domain
- Frequency references for frequency metrology

provide an almost continuous set of references throughout the MW, THz, IR, visible, UV

 precision spectroscopy of polyatomic molecules for physical chemistry studies: atmospheric physics, astrophysics, collision physics, chemical dynamics and reaction, trace gas detection, breath analysis...

Precision measurements with molecules

- Need efficient mid-IR laser sources of well-controlled frequency
- Mid-IR quantum cascade lasers (QCLs) are promising
 - ✓ cw, mW to W power levels
 - ✓ 3-25 µm range
 - ✓ tuneability ~100 GHz or more
 - × free-running line width 10 kHz to few MHz \rightarrow frequency stabilization needed
- Several frequency stabilization schemes developed in the last years
 - \rightarrow stable cavities, molecular lines, injection, combs,...

Challenges:

- most stable reference \rightarrow near-IR ultra-stable lasers
- traceability to a primary standard

 \rightarrow ultra-stable optical fiber links

→ frequency comb to bridge the gap between near-IR and mid-IR

available in metrology institutes only

SI-traceable frequency-comb-stabilised QCL

 $\sim 10^{-16}$ potentially (Cs fountain)

M Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, W-K Lee, D Xu, P-E Pottie

Chanteau et al, New J. Phys. (2013) Argence et al, Nature Photon. (2015) Santagata et al, Optica (2019) see also: Insero et al., Sci. Rep. (2017)

Optical fibre link for ultra-stable frequency transfer

- correction of the propagation noise
- added noise (transfer instability)
 - a few 10⁻¹⁶ after 1 s
 - ~10⁻¹⁹ after ~a day
- frequency inaccuracy < 10⁻¹⁹

Lee et al., Appl. Phys. B (2017)

l'Observatoire SYRTE

stèmes de Référence Temps-Espace

M Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, W-K Lee, D Xu, P-E Pottie

QCL stabilization to a near-IR frequency reference

QCL stabilization to a near-IR frequency reference

QCL stabilization to a near-IR frequency reference

QCL tuneable over ~1.5 GHz

Performances of the stabilized QCL

Argence et al, Nature Photon. (2015)

12 orders of magnitude noise

- ultimate QCL stabilities (0.06 Hz @ 1s) and accuracies (sub-Hz, 10 mHz potentially)
- narrowest QCL so far (0.1 Hz)

⇒ 'atomic physics' types of precision measurements on molecules

saturated absorption spectroscopy

- ~25 kHz linewidth
- a few 10 Hz uncertainty
- state-of-the-art
- in a 1.5-m long Fabry-Perot cavity
- frequency modulation, 3rd harmonic

Methanol, P(E,co,0,2,32) line, C-O stretch

- ~400 kHz linewidth
- a few kHz uncertainty
- 10²-10⁴ improvement compared to literature / HITRAN database
- in a multipass cell
- frequency modulation, 1st harmonic

pressure broadening: 100.8 (0.2) kHz/Pa

Santagata et al, Optica (2019)

Ultra-precise spectroscopy with QCLs: spectral coverage/tuneability

Santagata et al, Optica (2019)

~400 MHz, continuous tuning range (EOM)

Summary / Perspectives

- Precise and tuneable frequency control of a mid-IR QCL referenced to a comb
 - \rightarrow stability and accuracy transfer from 1.54 μm to 10 μm
 - → direct link to primary frequency standards
 - \rightarrow record stabilities/accuracies: 0.05 Hz (2x10⁻¹⁵) satbility @ 1 s

- 0.1 Hz line width

- 0.3 Hz (10⁻¹⁴) accuracy, potentially 0.01 Hz (3x10⁻¹⁶)

- \rightarrow anywhere in 5-20 μm region potentially, 1.5 GHz continuous tuning
- Saturated absorption spectroscopy of OsO₄, CH₃OH
 - \rightarrow uncertainty on central frequency from a few 10 Hz to a few kHz
 - \rightarrow unprecedented resolution: new lines and subtle patterns unreported so far

Allows the level of near-IR ultra-stable lasers to be transferred to the mid-IR ⇒ 'atomic physics' types of precision measurements on molecules

no longer constrained by CO_2 laser or any molecular reference \Rightarrow study of any species showing absorption between 3 and 25 µm

Summary / Perspectives

- Precise spectroscopic measurements of a variety of species
- Integration in a new generation molecular clock under construction
- Study of hyperfine structure of methanol
- me/mp time variation using CH₃OH or NH₃
- Measure the energy difference between the two enantiomers of a chiral molecule induced by the parity violation inherent in the weak interaction

Christian Chardonnet Sean Tokunaga

Rosa Santagata

<u>Former members:</u> Bruno Chanteau, Béregère Argence <u>Visitors:</u> Andrei Goncharov

M Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, D Xu, WK Lee, PE Pottie

UNIVERSITÉ PARIS 13

NCPChem (2011-2014), LIOM (2012-2014), PVCM (2016-2020)

