De la mesure des sections efficaces dans BABAR à la prédiction de g-2 du muon

Congrès Général de la SFP Cité des Congrès, Nantes 8 juillet 2019

Georges Vasseur

Irfu, CEA, Université Paris-Saclay

représentant la collaboration BABAR

L'énigme de g-2

• Moment magnétique :

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

Moment magnétique anomale :

$$a_l = \frac{1}{2}(g_l - 2)$$

- Très grande précision sur la valeur théorique et la valeur expérimentale.
- Désaccord persistant entre théorie et expérience dans le cas du muon :

$$a_{\mu}^{th.} = (11\ 659\ 180.2 \pm 4.9)\ 10^{-10}$$
 $a_{\mu}^{exp.} = (11\ 659\ 208.9 \pm 6.3)\ 10^{-10}$
 $\Delta a_{\mu} = (28.7 \pm 8.0)\ 10^{-10}$

Calcul de g-2

Lien avec les sections efficaces

- La correction principale et l'incertitude dominante viennent de la polarisation hadronique du vide: $a_{\mu}^{had\ LO} = (692.3 \pm 4.2)\ 10^{-10}$
- Calcul à partir de données expérimentales.

 A basse énergie la section efficace hadronique totale est déterminée comme la somme des modes exclusifs.

Mesures récentes

- $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$
 - Phys. Re. D 96 (2017) 092009.
- $e^+ e^- \rightarrow \pi^+ \pi^- \eta$
 - Phys. Rev. D 97 (2018) 052007.
- $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0$, $\pi^+ \pi^- \pi^0 \pi^0 \eta$
 - Phys. Rev. D 98 (2018) 112015.

- Phys. Rev. D 95 (2017) 052001.
- $e^+ e^- \rightarrow K^0_S K^{\pm} \pi^{\mp} \pi^0$, $K^0_S K^{\pm} \pi^{\mp} \eta$
 - Phys. Rev. D 95 (2017) 092005.

Détecteur et Détecteur Cherenkov (DIRC) lot de données 144 barres de quartz et 11000 PM Calorimètre électromagnétique Solénoïde 6580 CsI(TI) cristaux 1.5T 0.5 ab⁻¹ en 10 ans e+ (3.1GeV) Delivered $_{500}$ Recorded: 531 fb⁻¹ $- \Upsilon(4S)$: 432 fb⁻¹ $- \Upsilon(3S)$: 30.2 fb⁻¹ e- (9GeV) — Off Peak & scans: 48 fb⁻¹ Chambre à dérive 40 couches Chambres à µ Détecteur de 100 RPC / LST vertex au Si 5 couches 8 juillet 2019 Georges Vasseur - Congrès de la SFP 2019

Rayonnement dans l'état initial

- Emission d'un photon par l'électron ou le positon incident :
 « Initial State Radiation » (ISR).
 - permet de mesurer les sections efficaces à plus basse énergie.
- Système hadronique en mouvement dos à dos avec le photon.
 - Bonne détection même au seuil.
 - Dans l'acceptance du détecteur.

Mesures de sections efficaces

 Etude de très nombreux modes par BABAR.

 Couverture de toute la région à basse énergie en utilisant l'ISR.

Analyse e⁺ e⁻ \rightarrow π ⁺ π ⁻ π ⁰ π ⁰

- γ ISR : photon avec la plus grande énergie (excédant 3 GeV).
- Exactement 2 traces (signe opposé).
- Au moins 4 photons.
- Ajustement cinématique.

- Problème principal:
 - bruit de fond $e^+ e^- \rightarrow \pi^+ \pi^- 3 \pi^0$
 - mesuré sur les données.

Résonance intermédiaire : $\omega \pi^0$

• 32% de $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ passe par $e^+e^- \rightarrow \omega\pi^0$.

PRD 96 (2017) 092009

Section efficace $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

E _{CM} (GeV)	Systématique
1.2 – 2.7	3.1 %
2.7 - 3.2	6.7 %
> 3.2	7.2 %

Mesure de BABAR :

- Bien plus précise.
- Couvrant une gamme d'énergie étendue.
- Une des sections efficaces les moins connues pour (g-2).
- De 0.85 à 1.8 GeV:

$$a_{\mu}(\pi^{+}\pi^{-}2\pi^{0}) = (17.9 \pm 0.1 \pm 0.6) \ 10^{-10}$$

- Précision relative de 3.2 %.
- Amélioration par un facteur 2,5.

Section efficace $e^+e^- \rightarrow \pi^+\pi^-\eta$

- [™]• η reconstruit en deux photons.
 - Etat intermédiaire pn dominant.
 - Mesure la plus précise,
 - gamme d'énergie étendue jusqu'à 3.5 GeV.

- Contribution à g-2 (< 1.8 GeV): $a_{\mu}(\pi^{+}\pi^{-}\eta) = (1.18 \pm 0.03 \pm 0.06) \cdot 10^{-10}$
 - Précision relative de 5%, améliorée par presque un facteur 2.

Modes avec kaons

- K_S^0 dans sa désintégration en $\pi^+ \pi^-$ comme paire de traces avec un vertex déplacé.
- K⁰_L comme un dépôt d'énergie isolé dans le calorimètre.
 - Validé sur le canal $e^+e^- \rightarrow \gamma \phi \rightarrow \gamma K^0_S K^0_L$
- K[±] en utilisant l'identification des particules chargées.

Section efficace $e^+e^- \rightarrow K^0_s K^0_l \pi^0$

- K*(892)⁰ K

 dominant.
- Présence de K*(1430)⁰ K⁰ et de $\phi \pi^0$.

Autres modes avec deux kaons

 Mesurés pour la première fois.

Modes avec K⁰_S K⁰_L
 PRD 95 (2017) 052001

Modes avec K⁰_S K[±]
 PRD 95 (2017) 092005

Sections efficaces totales $K K \pi (\pi)$

- Toutes les mesures possibles ont été effectuées par BABAR.
- KK π représente environ 12% de la section efficace totale à E = 1.65 GeV.
- $KK\pi\pi$ représente environ 25% de la section efficace totale à E = 2 GeV.
- Précision sur (g-2) de 6%, améliorée de 20% (ΚΚπ) et d'un facteur 8 (ΚΚππ): (dans la gamme d'énergie jusqu'à 1.8 GeV)

$$a_{\mu}(KK\pi) = (2.45 \pm 0.15) \ 10^{-10}$$
 $a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \ 10^{-10}$

Résumé

- Grâce au rayonnement dans l'état initial, BABAR a réalisé des mesures précises d'annihilations e⁺e⁻ à basse énergie.
- BABAR a publié récemment les sections efficaces de plusieurs modes hadroniques $(\pi^+ \pi^- \pi^0 \pi^0, \pi^+ \pi^- \eta)$, certaines pour la première fois (modes KKX).

```
• Elles contribuent à améliorer le calcul de (g-2).

• DHMZ 2011: a_{\mu}^{had\ LO}=(692.3\pm4.2)\ 10^{-10}

• DHBZ 2017: a_{\mu}^{had\ LO}=(693.1\pm3.4)\ 10^{-10}
                                                                                                                                             EPJ C71, 1515 (2011)
                                                                                                                                              EPJ C77, 827 (2017)
```

- Désaccord toujours autour de 3,5 σ.
- Nouvelle analyse $\pi^+ \pi^-$ en cours pour améliorer la prédiction.
- Nouveau résultat expérimental sur (g-2) attendu pour bientôt.