Direct photon measurements in different collision systems with the ALICE experiment at the LHC

Erwann Masson

Laboratoire Subatech, Nantes

On behalf of the ALICE Collaboration

25° Congrès Général de la Société Française de Physique, Nantes

Motivation and method	
-----------------------	--

Hard probes in different collision systems

рр	p–Pb	Pb-Pb
pQCD PDF		

Hard probes in different collision systems

рр	p–Pb	Pb–Pb
pQCD PDF	pQCD nPDF Cold nuclear matter effects	

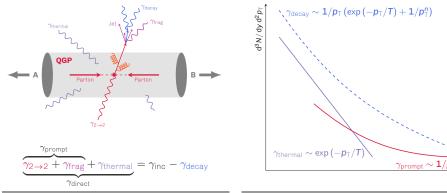
Hard probes in different collision systems

рр	p–Pb	Pb-Pb
pQCD PDF	pQCD nPDF	pQCD nPDF
	Cold nuclear matter effects	Cold nuclear matter effects
		Hot nuclear matter effects
		QGP

Motivation and method	ALICE	Direct photons	s at low p_{T}	Direct photons at high p _T
Hard probes in c	different co	ollision systems		
	рр	p–Pb	Pb–Pb	
Test theory	pQCD PDF	pQCD nPDF	pQCD nPDF	
		Cold nuclear matter effects	Cold nuclear matter effects	
			Hot nuclear matter effects	Study collectivity
			QGP	

► Small systems (pp, p-Pb) vs. Pb-Pb → not so trivial (see S. Porteboeuf-Houssais' plenary talk on Wednesday at 11pm)

Motivation and method	ALIC	E Direct photo	ons at low p _T	Direct photons at high p_{T}
Hard probes in o	different c	ollision systems		
	рр	p–Pb	Pb–Pb	
Test theory	pQCD PDF	pQCD nPDF	pQCD nPDF	
		Cold nuclear matter effects	Cold nuclear matter effects	
			Hot nuclear matter effects	Study collectivity
			QGP	


► Small systems (pp, p-Pb) vs. Pb-Pb → not so trivial (see S. Porteboeuf-Houssais' plenary talk on Wednesday at 11pm)

Experimental approach

- Measure many observables in the three systems and compare (e.g. R_{pA}, R_{AA})
- Many hard probes (Z. Conesa del Valle's talk) → among them, direct photons (including also a valuable soft component)

Direct photons in hadron collisions

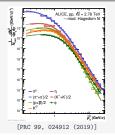
▶ Produced at every stage of the collision, **not affected** by QCD medium → valuable probe

Prompt photons (pp, p–Pb, Pb–Pb)

- Dominant at high pT
- Very good description within pQCD at NLO
- Access to parton energy loss (correlations)
- Test p-Pb and Pb-Pb binary scaling

Thermal photons (Pb-Pb

- Dominant at low pT
- From QGP/hadron gas thermalisation
- Access to medium properties
- Sensitive to QGP space-time evolution (flow)

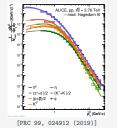

How to extract direct photons?

Low/intermediate- p_{T} component ($\lesssim 10 \text{ GeV}/c$) \rightarrow subtraction method

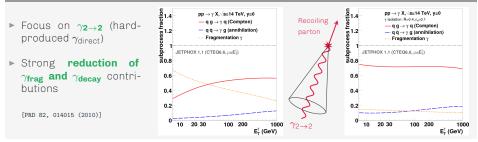
▶ Direct photons → all photons except from particle decays

$$\gamma_{\rm direct} = \gamma_{\rm inc} - \gamma_{\rm decay} = \left(1 - \frac{\gamma_{\rm decay}}{\gamma_{\rm inc}}\right) \gamma_{\rm inc} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{\rm inc}$$

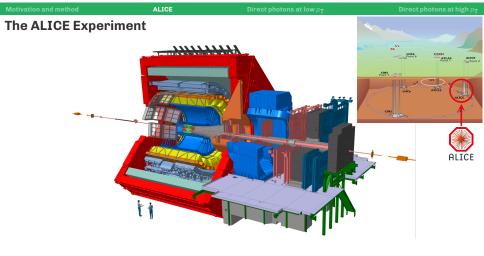
- ► Direct photon excess ratio $R_{\gamma} = \frac{\gamma_{\text{inc}}}{\gamma_{\text{decay}}} \equiv \frac{\gamma_{\text{inc}}}{\pi_{\text{param}}^0} / \frac{\gamma_{\text{decay}}}{\pi_{\text{param}}^0}$
- ▶ Ratio advantage → cancellation of some uncertainties

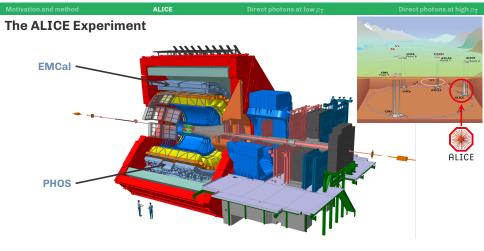

How to extract direct photons?

Low/intermediate- p_T component ($\lesssim 10 \text{ GeV}/c$) \rightarrow subtraction method

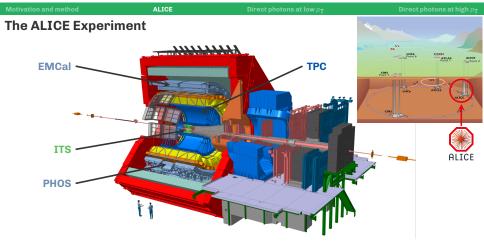

▶ Direct photons → all photons except from particle decays

$$\gamma_{\rm direct} = \gamma_{\rm inc} - \gamma_{\rm decay} = \left(1 - \frac{\gamma_{\rm decay}}{\gamma_{\rm inc}}\right) \gamma_{\rm inc} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{\rm inc}$$


- ► Direct photon **excess ratio** $R_{\gamma} = \frac{\gamma_{\text{inc}}}{\gamma_{\text{decay}}} \equiv \frac{\gamma_{\text{inc}}}{\pi_{\text{param}}^0} / \frac{\gamma_{\text{decay}}}{\pi_{\text{param}}^0}$
- ► Ratio advantage → cancellation of some uncertainties

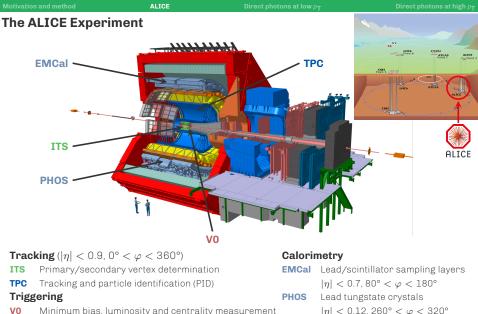


High- p_{T} component (\gtrsim 10 GeV/c) ightarrow isolation method


Direct photon measurements in different collision systems with the ALICE experiment at the LHC - Erwann Masson

Calorimetry

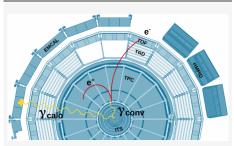
EMCal	Lead/scintillator sampling layers
	$ \eta < 0.7$, $80^\circ < arphi < 180^\circ$
PHOS	Lead tungstate crystals
	$ \eta <$ 0.12, 260° $< arphi <$ 320°



Tracking ($|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$)

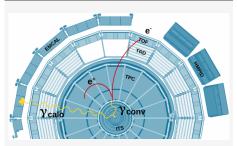
- **ITS** Primary/secondary vertex determination
- **TPC** Tracking and particle identification (PID)

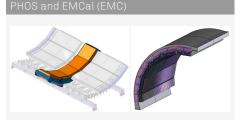
Calorimetry


EMCalLead/scintillator sampling layers $|\eta| < 0.7, 80^{\circ} < \varphi < 180^{\circ}$ PHOSLead tungstate crystals $|\eta| < 0.12, 260^{\circ} < \varphi < 320^{\circ}$

 $\begin{array}{ll} \textbf{V0} & \mbox{Minimum bias, luminosity and centrality measurement} \\ + \mbox{extended } \textbf{\textit{p}}_{T} \mbox{ reach thanks to EMCal and PHOS triggering capabilities} \end{array}$

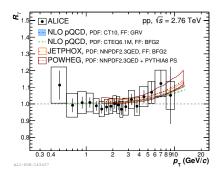
Photon reconstruction techniques


Photon Conversion Method (PCM)

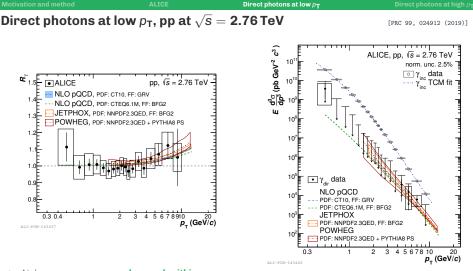

- Based on photon conversion in detector material (ITS, TPC)
- \blacktriangleright Small conversion probability $\lesssim~9\%$ but very good energy resolution $\sim~1.6\%$ at low ρ_{T}

Photon reconstruction techniques

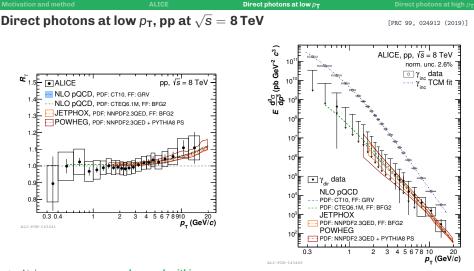
Photon Conversion Method (PCM)



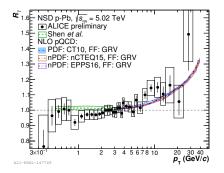
- Based on photon conversion in detector material (ITS, TPC)
- \blacktriangleright Small conversion probability $\lesssim~9\%$ but very good energy resolution $\sim~1.6\%$ at low $p_{\rm T}$



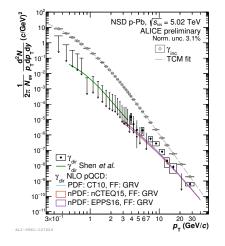
- ► Direct measurement of photon deposited energy in adjacent calorimeter cells → grouped in clusters for reconstructing photon energy
- ▶ Poorer energy resolution at low p_T (3.3/ \sqrt{E} \oplus 1.1% for PHOS, 11/ \sqrt{E} \oplus 1.7% for EMCal) but **higher statistic at high** p_T (γ triggers)
- Possible combination to reduce uncertainties and cover a broad p_T range


Motivation and method		Direct photons at low p_{T}	
Direct photons at lo	w p_{T} , pp at $_{\mathrm{V}}$	$\overline{/s} = 2.76 \text{TeV}$	[PRC 99, 024912 (2019)]

- At low p_T, no excess observed within uncertainties
 → supports Pb–Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)



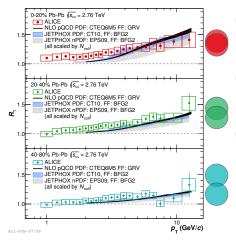
- At low p_T, no excess observed within uncertainties → supports Pb-Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)
- ▶ 90% C.L. (arrows) \rightarrow points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Paquet [PRC 93 (2016)], Vogelsang [PRD 67 (2003)], JETPHOX, POWHEG)



- At low p_T, no excess observed within uncertainties → supports Pb-Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)
- ▶ 90% C.L. (arrows) \rightarrow points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Paquet [PRC 93 (2016)], Vogelsang [PRD 67 (2003)], JETPHOX, POWHEG)

Direct photons at low $\rho_{\rm T},$ p–Pb at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$

- At low p_T, no excess observed within uncertainties
 → supports Pb–Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with binary scaled pQCD at NLO

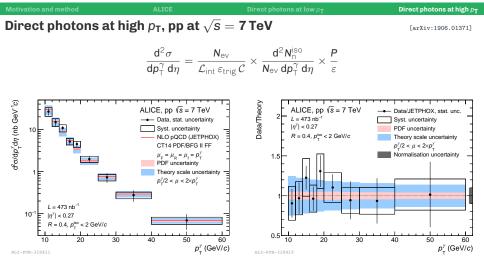

Direct photons at low pT

- ▶ 90% C.L. (arrows) \rightarrow points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Vogelsang [PRD 67 (2003)]) and a hydrodynamic model (Shen [PRC 95 (2017)])

Direct photons at low pT

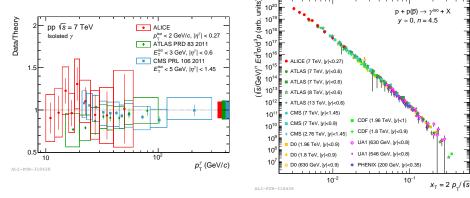
Direct photons at low $p_{\rm T},$ Pb–Pb at $\sqrt{s_{\rm NN}}=$ 2.76 TeV

[PLB 754, 235-248 (2016)]

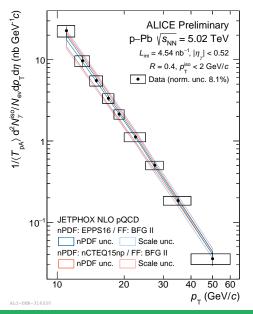

- ▶ Two reconstruction techniques combined (PCM, PHOS) → covering **very low** $p_{\rm T}$, 0.9 < $p_{\rm T}$ < 14 GeV/c
- ▶ For $p_T > 5$ GeV/c, R_γ excess consistent with binary scaled pQCD prompt photons in each centrality class
- At low p_T, 10–15% excess observed in central collisions → another source of photons

Direct photons at low $p_{\rm T}$, Pb–Pb at $\sqrt{s_{\rm NN}}=$ 2.76 TeV

[PLB 754, 235-248 (2016)]


- ▶ Two reconstruction techniques combined (PCM, PHOS) → covering **very low** $p_{\rm T}$, 0.9 < $p_{\rm T}$ < 14 GeV/c
- ▶ For $p_T > 5$ GeV/c, R_γ excess consistent with binary scaled pQCD prompt photons in each centrality class
- At low p_T, 10-15% excess observed in central collisions → another source of photons
- ► Comparison to several hydrodynamic models → yield consistent with a thermal radiation
- ▶ Effective QGP temperature (0-20%) → $T_{eff}^{LHC} \sim 304 \text{ MeV} \gg T_{eff}^{RHIC} \sim 239 \text{ MeV}$ measured by PHENIX in Au-Au collisions at $\sqrt{s_{\text{NN}}} = 0.2 \text{ TeV}$ [PRC 91, 064904 (2015)]

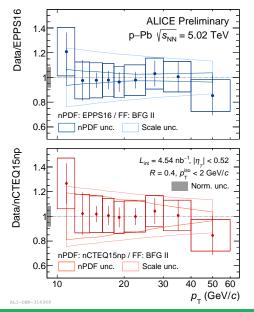
- Syst. unc. ranging from 19% to 24% → dominated by the isolation method
- ► ALICE data compared to **pQCD at Next-to-Leading Order** (JETPHOX [PRD 73, 094007 (2006)] with CT14 PDF [PRD 93, 033006 (2016)] and BFG II FF [EPJC 2, 529-537 (1998)])
- Good agreement between this measurement and theory within stat. and syst. uncertainties


Direct photons at high p_{T} , pp at $\sqrt{s} =$ 7 TeV

[arXiv:1906.01371]

- Consistent data-to-theory ratios among ALICE, ATLAS [PRD 83, 052005 (2011)] and CMS [PRL 106, 082001 (2011)]
- Extending the p_T^{γ} reach down compared to other LHC experiments \rightarrow access to lower x_T
- Compatible with isolated photon data at different centre-of-mass energies in pp and pp collisions [NPB 860, 311-338 (2012)]

Direct photons at high $p_{\rm T}$, p–Pb at $\sqrt{s_{\rm NN}}=$ 5.02 TeV



$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}\eta}\right)_{\mathrm{pp-eq}} = \frac{1}{\langle T_{\mathrm{pA}}\rangle} \times \left(\frac{\mathrm{d}^{2}N_{\gamma}^{\mathrm{iso}}}{N_{\mathrm{ev}}\,\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}\eta}\right)_{\mathrm{p-Pb}}$$

▶ Binary nucleon collision scaling → nuclear overlap factor $\langle T_{pA} \rangle = 0.09923 \text{ mb}^{-1}$ [ALICE-PUBLIC-2018-011]

- JETPHOX pQCD calculations at Nextto-Leading Order [PRD 73, 094007 (2006)] using EPPS16 [EPJC 77, 163 (2017)] and nCTEQ15np [PRD 93, 085037 (2016)] nPDFs
- Good agreement between this measurement and theory within stat. and syst. uncertainties for the two nPDFs

Direct photons at high p_{T} , p–Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\rho_{\mathrm{T}}\,\mathrm{d}\eta}\right)_{\mathrm{pp-eq}} = \frac{1}{\langle T_{\mathrm{pA}}\rangle} \times \left(\frac{\mathrm{d}^{2}\mathbf{N}_{\gamma}^{\mathrm{iso}}}{\mathbf{N}_{\mathrm{ev}}\,\mathrm{d}\rho_{\mathrm{T}}\,\mathrm{d}\eta}\right)_{\mathrm{p-Pb}}$$

- Binary nucleon collision scaling → nuclear overlap factor ⟨T_{pA}⟩ = 0.09923 mb⁻¹ [ALICE-PUBLIC-2018-011]
- JETPHOX pQCD calculations at Nextto-Leading Order [PRD 73, 094007 (2006)] using EPPS16 [EPJC 77, 163 (2017)] and nCTEQ15np [PRD 93, 085037 (2016)] nPDFs
- Good agreement between this measurement and theory within stat. and syst. uncertainties for the two nPDFs

Conclusions and outlook

Direct photons at low p_{T} , subtraction method

- Measured from p_T = 0.3 GeV/c to p_T = 32 GeV/c in pp, p-Pb and Pb-Pb collisions at different centre-of-mass energies thanks to the ALICE independent reconstruction techniques
- ▶ Results compatible with pQCD calculations at NLO for p_T > 7 GeV/c → prompt photons
- ▶ Low-p_T excess observed in Pb–Pb collisions → compatible with a thermal radiation
- Outlook → LHC Run III (100 times more Pb-Pb data and improved detector knowledge) to better constrain thermal models and unravel the **direct photon puzzle**

Conclusions and outlook

Direct photons at low p_{T} , subtraction method

- Measured from p_T = 0.3 GeV/c to p_T = 32 GeV/c in pp, p-Pb and Pb-Pb collisions at different centre-of-mass energies thanks to the ALICE independent reconstruction techniques
- ▶ Results compatible with pQCD calculations at NLO for p_T > 7 GeV/c → prompt photons
- ▶ Low-p_T excess observed in Pb-Pb collisions → compatible with a thermal radiation
- > Outlook → LHC Run III (100 times more Pb-Pb data and improved detector knowledge) to better constrain thermal models and unravel the **direct photon puzzle**

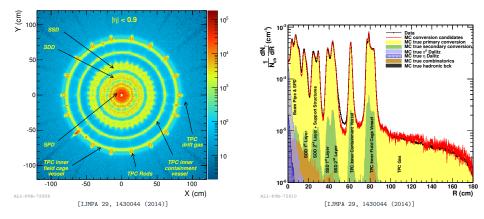
Direct photons at high p_{T} , isolation method

- ▶ Measured in the **10–60 GeV**/*c* p_{T} range in pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- Results compatible with pQCD calculations at NLO and in agreement with ATLAS and CMS
- ► ALICE extends the p_T reach to lower values compared to ATLAS and CMS → valuable result to get a good understanding of pQCD towards the thermal photon region
- Outlook $\rightarrow \gamma$ -jet and γ -hadron correlations to investigate **parton energy loss**

Conclusions and outlook

Direct photons at low p_{T} , subtraction method

- Measured from p_T = 0.3 GeV/c to p_T = 32 GeV/c in pp, p-Pb and Pb-Pb collisions at different centre-of-mass energies thanks to the ALICE independent reconstruction techniques
- ▶ Results compatible with pQCD calculations at NLO for p_T > 7 GeV/c → prompt photons
- ▶ Low-p_T excess observed in Pb-Pb collisions → compatible with a thermal radiation
- ▶ Outlook → LHC Run III (100 times more Pb-Pb data and improved detector knowledge) to better constrain thermal models and unravel the **direct photon puzzle**

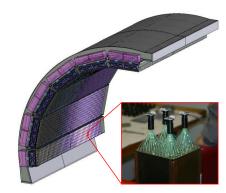

Direct photons at high p_{T} , isolation method

- ▶ Measured in the **10–60 GeV**/*c* p_{T} range in pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- Results compatible with pQCD calculations at NLO and in agreement with ATLAS and CMS
- ► ALICE extends the p_T reach to lower values compared to ATLAS and CMS → valuable result to get a good understanding of pQCD towards the thermal photon region
- Outlook $\rightarrow \gamma$ -jet and γ -hadron correlations to investigate **parton energy loss**

Merci pour votre attention !

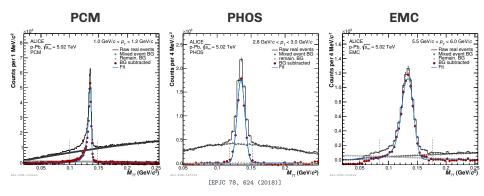
Backup

PCM reconstruction technique and ALICE central barrel

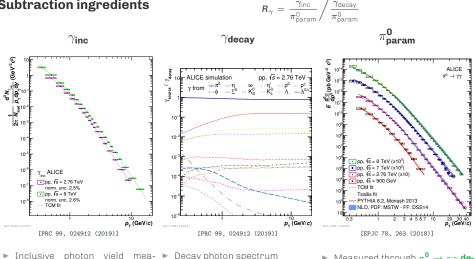


▶ " γ -ray tomography" used to determine the **material budget** → ~ 4.5 % in PCM measurement systematic uncertainties

EMCal, the ALICE ElectroMagnetic Calorimeter


Specifications

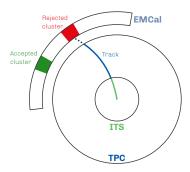
- ▶ 12 supermodules → 3072 modules → 12288 cells with a 6 × 6 cm² area
- ► Each cell → 153 lead/scintillator alternating layers (24.6 cm thick in total)
- Energy/position resolutions → 4.8%/E ⊕ 11.3%/√E ⊕ 1.7% and 5.3 mm/√E ⊕ 1.5 mm
- Covers $|\eta_{\gamma}| < 0.7$ and **100°** in azimuth (φ)
- Used as trigger detector (γ/jets)



Photon reconstruction techniques, π^0 reconstruction performance

- ▶ π^0 mesons enter R_{γ} computation through $\pi^0_{param} \rightarrow$ reconstructed with the same techniques as inclusive photons
- Best resolution on the π^0 mass peak with PCM

Subtraction ingredients


- sured with different techniques
- Systematic uncertainties dominated by p--independent material budget (PCM), global E scale (PHOS) or clustering (EMC)
- Decay photon spectrum \rightarrow cocktail simulation
 - Mother particle abundances sured spectra (or m_T scaling)
- Measured through $\pi^0 \to \gamma \gamma \, de$ cay channel with the same techniques as γ_{inc} for **cancelling un**certainties
- based on **parametrised mea-** \triangleright π^0 spectrum parametrised with different models

Photon reconstruction at high p_{T}

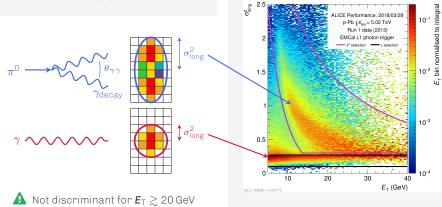
Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially (ALICE y_{direct} parametrisation)

$$\begin{split} |\Delta \eta| &\leq 0.010 + (\pmb{\rho}_{\mathrm{T}}^{\mathrm{track}} + 4.07)^{-2.5} \\ |\Delta \varphi| &\leq 0.015 + (\pmb{\rho}_{\mathrm{T}}^{\mathrm{track}} + 3.65)^{-2} \end{split}$$

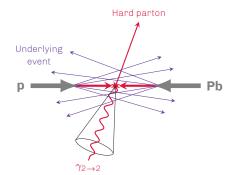
Photon reconstruction at high p_T

Neutral clusters (charged particle veto)


 Candidate clusters must not match a track spatially (ALICE γ_{direct} parametrisation)

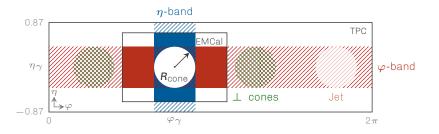
> $|\Delta \eta| \le 0.010 + (\rho_{\rm T}^{\rm track} + 4.07)^{-2.5}$ $|\Delta \varphi| \le 0.015 + (\rho_{\rm T}^{\rm track} + 3.65)^{-2}$

Candidate photons (shower shape cuts)


Clusters shower shape σ²_{long} is used to reject the γ_{decay} component

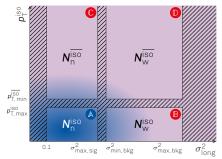
$$0.1 < \sigma_{
m long}^2 < \left(\sigma_{
m long}^2
ight)_{
m max}$$

Underlying event estimation in p-Pb collisions (high-p_T photons)


A Larger contribution from the **underlying event (UE)** in p–Pb than in pp collisions

▶ Underlying event → **all processes but the hardest** LO parton interaction

Underlying event estimation in p-Pb collisions (high-p_T photons)


▶ UE estimated and **subtracted before** isolation, event-by-event $\rightarrow p_T^{iso} - \rho_{UE} \times A_{cone} < 2 \text{ GeV}/c$

Method	Pros	Cons
⊥ cones	– Far from the isolation cone – Can be crosschecked with ALICE PHOS	– Neutral part not measurable
η -band	- Neutral and charged parts both measurable	- Affected by a hard contribution from cone
arphi-band	– Neutral and charged parts both measurable	 Affected by a hard contribution from cone Possibly sensitive to the opposite jet

► Charged UE measurement in perpendicular cones then "neutral + charged" extrapolation → isolation using neutral + charged particles

Isolated photons, signal extraction

$\sigma^2_{\rm long}$ limit	10 - 12	12 - 16	16 - 18	18 - 60
narrow min	0.10	0.10	0.10	0.10
narrow max	0.40	0.35	0.32	0.30
wide min	0.60	0.45	0.35	0.33
wide max	2.10	1.95	1.85	1.83

- ▶ Isolation crit. (▲,
 B) → $p_T^{iso} < 2 \text{ GeV}/c$
- ▶ Anti-isolation crit. ((), ()) → p_T^{iso} > 3 GeV/c

The ABCD method [PRD 83, 052005 (2011)]

- Mainly signal region
 (a) = isolated narrow clusters (iso, n)
- Mainly background regions
 - B = isolated wide clusters (iso, w)
 - C = non-isolated narrow clusters (iso, n)
 - Image: mon-isolated wide clusters (iso, w)

Particle quantities

- ► S = γ_{direct} signal
- ▶ **B** = background (π^0 , η , their γ_{decay} , etc.)
- $N = S + B \rightarrow$ what is measured
- ► Part of region () clusters truly induced by $\gamma_{\text{direct}} \rightarrow \text{purity}$ of the N_n^{iso} sample

$$\textbf{\textit{P}}_{dd} = \textbf{\textit{S}}_{n}^{iso}/\textbf{\textit{N}}_{n}^{iso} = 1 - \textbf{\textit{B}}_{n}^{iso}/\textbf{\textit{N}}_{n}^{iso}$$

 Background B^{iso} estimated with data and corrected with MC

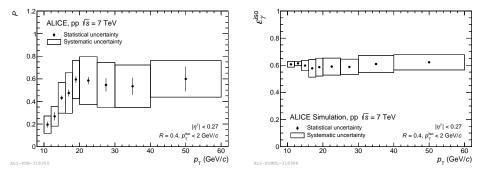
Direct photon measurements in different collision systems with the ALICE experiment at the LHC – Erwann Masson

Isolated photons, purity estimation

Data-driven background estimation in signal region

$$B_{n}^{iso} = \frac{N_{w}^{iso} \times N_{n}^{iso}}{N_{w}^{iso}} \Rightarrow P_{dd} = 1 - \frac{B_{n}^{iso}}{N_{n}^{iso}} = 1 - \left(\frac{N_{w}^{iso} \times N_{n}^{iso}}{N_{w}^{iso} \times N_{n}^{iso}}\right)_{data}$$

- Possibly signal contamination in background regions (B), (6) and (D) and non-constant background isolation probability → purity must be corrected using MC simulations
- ▶ Jet-jet (JJ, **background**) + γ -jet (GJ, **signal**) → mixed and used to compute a **correction factor** α

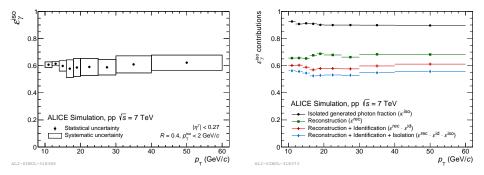

$$\alpha = \underbrace{\frac{\left(\boldsymbol{B}_{n}^{\text{iso}}\right)_{JJ}}{\left(\boldsymbol{B}_{n}^{\text{iso}}\right)_{MC \text{ mix}}}}_{\text{estimated bkg}} \Rightarrow \boldsymbol{P} = 1 - \underbrace{\left(\frac{\boldsymbol{B}_{n}^{\text{iso}} \times \boldsymbol{N}_{w}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}\right)_{MC}}_{\alpha} \times \left(\frac{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}\right)_{\text{data}}$$

Isolated photons in pp collisions at $\sqrt{s}=$ 7 TeV – Purity and efficiency

[arXiv:1906.01371]

Specifications

- ▶ 2011 data sets, EMCal Level-0 trigger (5.5 GeV) → photons measured in 10–60 GeV/c
- Integrated luminosity → L_{int} = 473 ± 28 (stat.) ± 17 (syst.) nb⁻¹
- Photons selected in $|\eta^{\gamma}| < 0.27$ and $\Delta \varphi^{\gamma} = 0.9$ rad

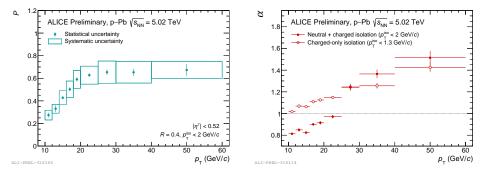

- Purity ranging from 20% to 60% → interplay between physics and detector effects
- ▶ Total efficiency ~ 60% → correcting data from reconstruction, ID and isolation inefficiencies

Isolated photons in pp collisions at $\sqrt{s}=$ 7 TeV – Efficiency

[arXiv:1906.01371]

Specifications

- ▶ 2011 data sets, EMCal Level-0 trigger (5.5 GeV) → photons measured in 10–60 GeV/c
- ▶ Integrated luminosity $\rightarrow L_{int} = 473 \pm 28$ (stat.) ± 17 (syst.) nb⁻¹
- Photons selected in $|\eta^{\gamma}| < 0.27$ and $\Delta \varphi^{\gamma} = 0.9$ rad

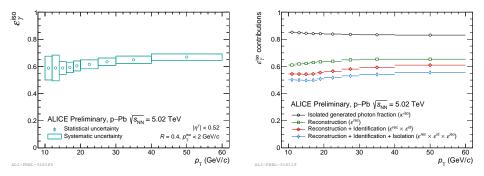


▶ Total efficiency ~ 60% → correcting data from reconstruction, ID and isolation inefficiencies

Results in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV – Purity and correction

Specifications

- ▶ 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \rightarrow photons measured in 10–60 GeV/c
- Integrated luminosity → L_{int} = 4.54 ± 0.37 nb⁻¹
- ▶ Photons selected in $|\eta^{\gamma}| < 0.52$ and $\Delta \varphi^{\gamma} = 1.39$ rad (enlarged acceptance)

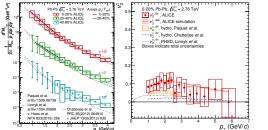


- ▶ Purity ranging from 27% to 67% → interplay between physics and detector effects
- α correction factor **different from unity** \rightarrow raw purity P_{dd} does need this MC correction

Isolated photons in p–Pb collisions at $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$ – Efficiency

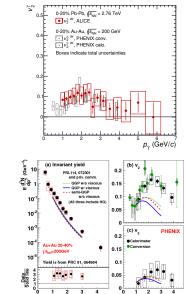
Specifications

- ▶ 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \rightarrow photons measured in 10–60 GeV/c
- Integrated luminosity → L_{int} = 4.54 ± 0.37 nb⁻¹
- ▶ Photons selected in $|\eta^{\gamma}| < 0.52$ and $\Delta \varphi^{\gamma} = 1.39$ rad (enlarged acceptance)



▶ Total efficiency ≥ 60% → correcting data from reconstruction, ID and isolation inefficiencies

The direct photon puzzle


- γ_{direct} yields are well reproduced by hydrodynamic models in a variety of systems (Au-Au at RHIC, Pb-Pb at LHC)
- However, the non-zero direct photon flow coefficient $v_2^{\gamma, \text{dir}}$ observed by PHENIX [PRC 94, 064901 (2016)] and ALICE [PLB 754, 235-248 (2016)] is underestimated by these models

 \rightarrow Direct photon puzzle

p_ (ĞeV/c) (a) Invariant vield 0.2 114.072301 ind priv. comm OGP w/o viscous 0.15 QGP w/ viscous semi-QGP 0.1 w/o viscous 10 II three include HG 0.05 10 10 PHENIX u+Au 20-40% 0.15 -200GeV 0.1 Yield is from PRC 91, 064904 Data Solid line 0.05 <u>،</u> 3 p_(GeV/c) p_(GeV/c)

[PRC 94, 064901 (2016)] [PLB 754, 235-248 (2016)]

Direct photon measurements in different collision systems with the ALICE experiment at the LHC - Erwann Masson