

Exploring the partonic phase at finite chemical potential within heavy-ion collisions

Pierre Moreau, Olga Soloveva, Lucia Oliva, Taesoo Song, Wolfgang Cassing, Elena Bratkovskaya

25ème Congrès Général de la Société Française de Physique, Nantes, July 8, 2019

arXiv:1903.10257

- Explore the QCD phase diagram at finite temperature and chemical potential through heavy-ion collisions
- Available information:
 - Experimental data at SPS, BES at RHIC
 - Lattice QCD calculation

Probes of the QGP at finite (T, μ_B)

- Goal: Study the properties of strongly interacting matter under extreme conditions from a microscopic point of view
- Realization: dynamical many-body transport approach

Parton-Hadron-String-Dynamics (PHSD)

- Explicit parton-parton interactions, explicit transiton from hadronic to partonic degrees of freedom
- Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase

W.Cassing, E.Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W.Cassing, EPJ ST 168 (2009) 3

Introduction

DQPM

Implementation in PHSD Results

Summarv

QCD EoS, partonic interactions

Pierre Moreau

Lattice data at finite (T, μ_B)

Taylor series of thermodynamic quantities in terms of (μ_B/T)

Implementation in PHSD Results

For the pressure, we get:

DQPM

Introduction

 $\frac{P}{T^4} = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right) = c_0(T) + c_0(T) \left(\frac{\mu_B}{T}\right)^6 + c_0(T) \left(\frac{\mu_B}{T}\right)^6$

Conditions of heavy-ion collisions

$$\langle n_{\rm S} \rangle = 0$$
 and $\langle n_{\rm O} \rangle = 0.4 \langle n_{\rm B} \rangle$

EPJ Web Conf. 137 (2017) 07008

Ŏ.10

0.15

0.20

0.25

0.30

Isentropic trajectories for (T, μ_R)

Implementation in PHSD Results

Correspondance $s/n_B \leftrightarrow$ collisional energy

DQPM

 $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$

Introduction

Summary

Isentropic trajectories for (T, μ_B)

Implementation in PHSD Results

Correspondance $s/n_B \leftrightarrow$ collisional energy

DQPM

 $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$

Introduction

= 144 ↔ 62.4 GeV

Summary

Isentropic trajectories for (T, μ_B)

Implementation in PHSD Results

□ Correspondance $s/n_B \leftrightarrow$ collisional energy

DQPM

 $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$

Introduction

- = 144 ↔ 62.4 GeV
- = 94 \leftrightarrow 39 GeV

Summary

Isentropic trajectories for (T, μ_B)

Implementation in PHSD Results

Correspondance $s/n_B \leftrightarrow$ collisional energy

DQPM

 $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$

Introduction

- = 144 ↔ 62.4 GeV
- = 94 ↔ 39 GeV
- = 70 ↔ 27 GeV

Summary

Isentropic trajectories for (T, μ_B)

DQPM

Introduction

Isentropic trajectories - IQCD EoS 0.6 Correspondance $s/n_B \leftrightarrow$ $\mu_{\rm B}^{\prime}/T = 1$ 420 collisional energy $S/n_B = 14_4$ 11 1.94 0.5 s/n_B $\mu_B/T \neq 2$ $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$ Sus and \$ 0.4 = 144 ↔ 62.4 GeV [GeV] $\mu_{\rm B}/T = 3$ 0.3 = 94 ↔ 39 GeV $\mu_{B}/T = 4$ = 70 ↔ 27 GeV 0.2 $\mu_{B}/T = 5$ = 51 ↔ 19.6 GeV 0.1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 μ_B [GeV] EPJ Web Conf. 137 (2017) 07008

Implementation in PHSD Results

Isentropic trajectories for (T, μ_B)

DQPM

Introduction

Isentropic trajectories - IQCD EoS 0.6 Correspondance $s/n_B \leftrightarrow$ $\mathbf{u}_{\mathbf{B}}^{\prime}/\mathbf{T} = \mathbf{u}_{\mathbf{B}}^{\prime}$ 420 s/n_B = 144 collisional energy II 1 94 0.5 s/n_B $\mu_B/T \neq 2$ $s/n_B = 420 \leftrightarrow 200 \text{ GeV}$ 500 5 0.4 = 144 ↔ 62.4 GeV [GeV] $\mu_{\rm B}/T = 3$ 0.3 = 94 ↔ 39 GeV $\mu_{B}/T = 4$ = 70 ↔ 27 GeV 0.2 $\mu_B/T = 5$ = 51 ↔ 19.6 GeV 0.1 = 30 ↔ 14.5 GeV 0.0 0.2 1.0 0.4 0.6 0.8 0.0 μ_B [GeV] EPJ Web Conf. 137 (2017) 07008

Implementation in PHSD Results

Isentropic trajectories for (T, μ_B)

Introduction

DQPM

Implementation in PHSD Results

Isentropic trajectories for (T, μ_B)

Introduction

DQPM

Implementation in PHSD Results

Implementation in PHSD Results

Summary

 Resummed properties of the quasiparticles are specified by scalar complex self-energies:

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2g_g\omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2g_q\omega$

- **Real part of the self-energy: thermal mass (M_g, M_q)**
- Imaginary part of the self-energy: interaction width of partons (γ_g , γ_q)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM

Introduction

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

$$M_g^2(T,\mu_B) = \frac{g^2(T,\mu_B)}{6} \left(\left(N_c + \frac{1}{2} N_f \right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right)$$
$$M_{q(\bar{q})}^2(T,\mu_B) = \frac{N_c^2 - 1}{8N_c} g^2(T,\mu_B) \left(T^2 + \frac{\mu_q^2}{\pi^2} \right)$$
$$\gamma_{q(\bar{q})}(T,\mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T,\mu_B)T}{8\pi} \ln \left(\frac{2c}{g^2(T,\mu_B)} + 1 \right)$$
$$\gamma_g(T,\mu_B) = \frac{1}{3} N_c \frac{g^2(T,\mu_B)T}{8\pi} \ln \left(\frac{2c}{g^2(T,\mu_B)} + 1 \right)$$

• Only one parameter (c = 14.4) + (
$$T$$
, μ_B)- dependent coupling constant to determine from lattice results

Introduction

T [GeV]

Scaling hypothesis at finite $\mu_B \approx 3\mu_a$

$$g^{2}(T/T_{c},\mu_{B}) = g^{2}\left(\frac{T^{*}}{T_{c}(\mu_{B})},\mu_{B}=0\right)$$

with the effective temperature

$$T^* = \sqrt{T^2 + \mu_q^2/\pi^2}$$

and the critical temperature at finite μ_B

$$T_c(\mu_B) = T_c \sqrt{1 - \alpha \mu_B^2}$$

0.15

0.20

0.25

0.30

T [GeV]

0.35

0.40

0.45

0.50

$$T_c(\mu_B) = T_c \sqrt{1 - \alpha \mu_B^2}$$

0.0

2

3

T/Tc(μ_B)

12

7

6

8 9 1 0

Blaizot, Iancu, Rebhan, Phys. Rev. D 63 (2001) 065003

Note: The contribution of longitudinal gluons is neglected in the calculation of thermodynamic quantities

Implementation in PHSD Results Summary

Pierre Moreau

Introduction

DQPM

Exploring the partonic phase at finite chemical potential within HIC

Introduction

DQPM

Implementation in PHSD

Results

Summary

QGP:

in equilibrium off equilibrium

Landau-matching condition:

Xu et al., Phys.Rev. C96 (2017), 024902

$$T^{\mu\nu}u_{\nu} = \epsilon u^{\mu} = (\epsilon g^{\mu\nu})u_{\nu}$$

Introduction

Calculation of the baryon current in each cells of the PHSD

$$J_B^{\mu} = \sum_{i} \frac{p_i^{\mu}}{E_i} \frac{(q_i - \bar{q}_i)}{3}$$

Lorentz transformation to obtain the local baryon density:

$$n_B = \gamma_E \left(J_B^0 - \vec{\beta_E} \cdot \vec{J_B} \right) = \frac{J_B^0}{\gamma_E}$$

with $\vec{\beta_E} = \vec{J_B} / J_B^0$ being the Eckart velocity.

Introduction

DQPM

Exploring the partonic phase at finite chemical potential within HIC

Illustration for HIC ($\sqrt{s_{NN}} = 17$ GeV)

Introduction

'R 71

under extreme conditions

Introduction

R 21

under extreme conditions

Illustration for HIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$) Strong-interaction matter under extreme conditions Au+Au 200GeV - 5% central $N_{cells}(T,\mu_B)/N_{cells}^{tot}$ [%] Au+Au 200GeV 0-5% central: x = y = 0 0.40 0.8 0.35 0.7 0.42 Temperature T [GeV] 0.30 t = 0.15 fm/c 0.6 0.25 t = 0.25 fm/c [GeV] 0.5 0.29 0.20 0.4 ⊢ 0.15 0.3 0.15 0.10 0.2 PHSD5.0 - |y_{cell}| < 1 0.05 0.1 t < 0.5 fm/c 0.015 -3 -2 2 -1 0 1 3 0.00 -0.025 0.000 0.025 0.050 0.075 **y**_{cell} μ_B [GeV]

Implementation in PHSD Results

Summary

Introduction

DQPM

Exploring the partonic phase at finite chemical potential within HIC

Exploring the partonic phase at finite chemical potential within HIC

Implementation in PHSD Results

DQPM

Introduction

- μ_B obtained from a statistical analysis of exp. data
- $\square \mu_B \text{ probed in PHSD} \\ \text{simulations around} \\ \text{the chemical freeze} \\ \text{out temperature } T_{ch}$
- Two completely different quantities!!!

Summary

CRC-TR 211 Strong-interaction matter under extreme conditions

Implementation in PHSD Results

Summary

Traces of the QGP at finite μ_B in observables of heavy-ion collsions

Pierre Moreau

Introduction

DQPM

Comparison between three different results:

- **1)** PHSD 4.0 : only $\sigma(T)$ and M(T)
- **2)** PHSD 5.0 : with $\sigma(\sqrt{s}, T, \mu_B = 0)$ and $M(T, \mu_B = 0)$
- **3)** PHSD 5.0 : with $\sigma(\sqrt{s}, T, \mu_B)$ and $M(T, \mu_B)$

Results for HIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

Introduction

2.5

3.0

Results for HIC ($\sqrt{s_{NN}} = 17$ GeV)

Implementation in PHSD Results

Introduction

DQPM

Results for HIC ($\sqrt{s_{NN}} = 7.6$ GeV)

Implementation in PHSD

Introduction

DQPM

Results

Summary

- $\Box \quad (T, \mu_B)$ -dependent cross sections and masses have been implemented in PHSD
- **u** High- μ_B regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions
- But, QGP fraction is small at low $\sqrt{s_{NN}}$: no effects seen in bulk observables
- Outlook:
 - > Study more sensitive probes to finite- μ_B dynamics
 - Use of a more sophisticated QuasiParticle Model with momentum dependent masses and widths
 - > Possible 1st order phase transition at larger μ_B ?

Thank you for your attention!

Energy density and baryon density

Illustration of the energy density and baryon density

