A torus+jet model for Sgr A*

Frédéric Vincent¹ M. A. Abramowicz, A. A. Zdziarski, M. Wielgus, T. Paumard, G. Perrin, O. Straub

¹CNRS/Observatoire de Paris/LESIA

Frédéric Vincent A torus+jet model for Sgr A*

2 Torus+Jet model

ヘロト 人間 とくほとく ほとう

Motivation: GRAVITY

• Flares of Sgr $A^* \rightarrow$ understand accretion flow

<ロ> (四) (四) (三) (三) (三)

Motivation: EHT

• Image of Sgr $A^* \rightarrow$ understand accretion flow

ヘロト 人間 とくほとくほとう

æ

Motivation/Aim Torus+Jet model Results

Motivation: spectral data

Recent far-infrared spectral data

Aim

 Simple analytic model of Sgr A* accretion flow emission (synchrotron radiation → density, temperature, B field)

Frédéric Vincent A torus+jet model for Sgr A*

ヘロト 人間 とくほとく ほとう

Torus+Jet

- Torus: "standard" ion-torus model (Straub+12, Vincent+15)
- Adding a simple jet model
- Aim: simplest physically meaningful setup

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 🗇 >

э

Jet model

- Moscibrodzka+13: jet sheath is emitting
 - $\rightarrow z_{\text{base}}, \theta_{\text{in}}, \theta_{\text{out}}$
- Constant Lorentz Γ_j
- Mass conservation: $n_e \propto r_{cyl}^{-2}$
- Approximate equipartition: $B^2 \propto n_e$
- Power-law temperature

$$\rightarrow T_e(z) = T_e(z_{\text{base}}) \left(\frac{z_{\text{base}}}{z}\right)^s$$

- Synchrotron from κ-distribution electrons (following Davelaar+18)
- Ray tracing in Kerr metric

ヘロン 人間 とくほ とくほ とう

Flat radio spectrum

- $F_{
 u} \propto
 u^{0.3}
 ightarrow$ more flux closer, less flux further
- Power-law temperature:

$$\rightarrow T_e(z) = T_e(z_{\text{base}}) \left(\frac{z_{\text{base}}}{z}\right)^s$$

Jet model

- Moscibrodzka+13: jet sheath is emitting
 - $\rightarrow z_{\text{base}}, \theta_{\text{in}}, \theta_{\text{out}}$
- Constant Lorentz Γ_j
- Mass conservation: $n_e \propto r_{cyl}^{-2}$
- Approximate equipartition: $B^2 \propto n_e$
- Power-law temperature

$$\rightarrow T_e(z) = T_e(z_{\text{base}}) \left(\frac{z_{\text{base}}}{z}\right)^s$$

- Synchrotron from κ-distribution electrons (following Davelaar+18)
- Ray tracing in Kerr metric

ヘロン 人間 とくほ とくほ とう

 κ -distribution

•
$$\frac{\mathrm{d}n_e}{\mathrm{d}\gamma} = N\gamma\sqrt{\gamma^2 - 1}\left(1 + \frac{\gamma - 1}{\kappa\theta_e}\right)^{-(\kappa + 1)}$$

- Matches thermal at low γ and PL at high γ ($\kappa = p + 1$)
- Synchrotron emission/absorption from Pandya et al. (2016)

< 🗇 ▶

э

Jet model

- Moscibrodzka+13: jet sheath is emitting
 - $\rightarrow z_{\text{base}}, \theta_{\text{in}}, \theta_{\text{out}}$
- Constant Lorentz Γ_j
- Mass conservation: $n_e \propto r_{cyl}^{-2}$
- Approximate equipartition: $B^2 \propto n_e$
- Power-law temperature

$$\rightarrow T_e(z) = T_e(z_{\text{base}}) \left(\frac{z_{\text{base}}}{z}\right)^s$$

- Synchrotron from κ-distribution electrons (following Davelaar+18)
- Ray tracing in Kerr metric

ヘロン 人間 とくほ とくほ とう

ヘロト 人間 とくほとくほとう

Spectral best fit

- Our model: $n_e = 5 \times 10^7 \text{cm}^{-3}$, $T_e = 3 \times 10^{10} \text{ K}$
- Davelaar+18: $n_e = 2.9 \times 10^7 \text{cm}^{-3}$, $T_e = 1.2 \times 10^{11} \text{ K}$

Spectral best fit size Image major axis compared to Bower+06 constraints

1.3mm image

- EHT 2008: intrinsic size for circ Gaussian = $37^{+16}_{-10} \mu$ as size increases to $\approx 80\mu$ as for thick-ring model
- Our size bigger, but strong \approx 40 μ as features present
- In good agreement with GRMHD results of Davelaar+18

э

ヨトメヨト

EHT-simulated image

- Torus and jet contributions well visible for face-on
- Rather clear difference with inclination
- EHT Sgr A* image: strong constraint on accretion flow

프 🕨 🗉 프

.⊒ ▶ ∢

Simple flare model

- Adding an orbiting blob
- Hotspot $n_e, T_e \propto 1.3 \times \text{quiescent} \times \text{Gaussian(t)}$
- Compute centroid evolution

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Simple flare model

Quiescent centroid influence:

smaller orbit + not centered on (0, 0)

because centroid converges to $\approx (0,0)$ at quiescence

(문)(문)

< < >> < </>

э

Conclusion

- Accurate simple (fast) analytical model
- In reasonable agreement with observed constraints and other similar results
- So far quiescent state only (EHT image)
- Under way: flaring state (GRAVITY astrometry)

프 에 에 프 어 - -

э

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○