#### X-ray news from the Galactic Center

#### Enmanuelle Mossoux







- 1 The Galactic Center components
- 2 X-ray footprint of the CircumNuclear Disk
- 3 The X-ray emission of Sgr A\* from 1999 to 2018
- 4 Conclusion

## Outline

#### 1 The Galactic Center components

- 2 X-ray footprint of the CircumNuclear Disk
- 3 The X-ray emission of Sgr A\* from 1999 to 2018
- 4 Conclusion

The Galactic Center components

#### The Galactic Center in X-rays



Chandra X-ray survey in 1-8 keV (red = 1-3 keV, green = 3-5 keV and blue = 5-8 keV; Wang et al. 2002)

The Galactic Center components

### The Sgr A complex



Old (10<sup>4</sup> years) SNR Size: 8  $\times$  10.5 pc Synchrotron spectrum with  $\alpha=-0.76$ 







High-Line-Ratio (HLR) cloud High  $NH_3(6,6)/NH_3(3,3)$ Exact shape unknown Near edge of an expanding shell?





Sgr A West arms Gas and dust mostly ionized



Hornstein et al. (2007)

The Galactic Center components

## The Sgr A complex

Sgr A\* (very faint SMBH) and the S-cluster









# Outline

#### The Galactic Center components

#### 2 X-ray footprint of the CircumNuclear Disk

- The previous studies on the diffuse X-ray emission
- The X-ray diffuse emission
- Spectra
- The role of the CND

#### 3) The X-ray emission of Sgr A\* from 1999 to 2018

#### 4 Conclusion

#### The previous studies on the diffuse X-ray emission

#### Origin of the diffuse X-ray emission

Produced by the interaction of the winds of the massive stars in the central parsec star cluster (Krabbe et al. 1991; Genzel et al. 2003).

#### Physical parameters of the diffuse X-ray emission

| Reference              | Region       | Observation                      | Model                                                                           |  |
|------------------------|--------------|----------------------------------|---------------------------------------------------------------------------------|--|
| Baganoff et al. (2003) | 10"          | Chandra, 1999 Sept. 21           | Thermal Bremsstrahlung with $\kappa T = 1.6 \text{ keV}$                        |  |
|                        |              |                                  | Optically thin plasma model with $\kappa T = 1.3 \text{ keV}$                   |  |
| Sakano et al. (2004)   | 28, 60, 100" | XMM-Newton, 2001 Sept. 4         | 2T MEKAL model with $\kappa T = 1$ and 4 keV                                    |  |
| Quataert (2004)        | 0 - 30"      | Simulation of massive stars wind | $<$ 2": $\kappa T \propto r^{-0.5}$ and $\rho \propto r^{-0.7}$                 |  |
|                        |              |                                  | $2-10^{\prime\prime}$ : $\kappa T \propto r^{-0.1}$ and $\rho \propto r^{-1.3}$ |  |
|                        |              |                                  | $10-30^{\prime\prime}$ : $\kappa T \propto r^{-1.4}$ and $ ho \propto r^{-2.6}$ |  |

### Image of the X-ray diffuse emission within $200'' \times 200''$

#### 1999-2012 Chandra data (84 observations; 4.6 Ms)



#### Image the X-ray diffuse emission within $200'' \times 200''$





### Image the X-ray diffuse emission within $200'' \times 200''$



Two hypothesis on the role of the CND

- The CND acts as an absorbing material for the background X-ray diffuse emission;
- The CND acts as a barrier for the central plasma.



60" = 2.34 pc X-ray 'shadow' 0.5-8 keV

Eckart (2018)

# Spectra of the X-ray diffuse emission



X-ray footprint of the CND Spectra

#### The hydrogen column density along the line of sight

The hydrogen column density along the line of sight

$$N_{
m H,LoS} = 7.5^{+0.2}_{-0.4} imes 10^{22} \, {
m cm}^{-2}$$

With the new Predehl & Schmitt (1995)'s relation (update of the ISM cross-sections and abundances):

$$N_{
m H}/A_{
m V} = 2.69 imes 10^{21} \, {
m cm}^{-2} \, {
m mag}^{-1}$$
 (Nowak et al. 2012).  
 $\Rightarrow A_{
m V} = 27.9^{+0.7}_{-1.5} \, {
m mag} > 25 \, {
m mag}$  of Schödel et al. (2010)

But Predehl & Schmitt (1995)'s relation computed for sources above/below the Galactic plane and the metallicity at the Galactic center is higher  $\Rightarrow$  larger absorption of the X-rays:

$$N_{
m H}/A_{
m V}>2.69 imes 10^{21}\,{
m cm}^{-2}\,{
m mag}^{-1}$$

).

X-ray footprint of the CND Spectra

#### Hydrogen column density, normalization and temperatures



X-ray footprint of the CND Spectra

#### Hydrogen column density, normalization and temperatures



Evolution of the temperatures with the distance

Cold plasma between 1.5 and 17":  $\kappa T = (1.4 \pm 0.2) r^{-0.30\pm0.08}$ 

 $\rightarrow$  Extrapolation failed

#### Hydrogen column density, normalization and temperatures



Evolution of the temperatures with the distance

Cold plasma between 1.5 and 17":  $\kappa T = (1.4 \pm 0.2) r^{-0.30 \pm 0.08}$  $\rightarrow$  Extrapolation failed

Hot plasma between 1.5 and 17":  $\kappa T = (4.9 \pm 0.2) r^{-0.2 \pm 0.1}$ 

 $\rightarrow$  Extrapolation failed

#### Hydrogen column density, normalization and temperatures



#### Evolution of the temperatures with the distance

Cold plasma between 1.5 and 17":  $\kappa T = (1.4 \pm 0.2) r^{-0.30 \pm 0.08}$  $\rightarrow$  Extrapolation failed

Hot plasma between 1.5 and 17":  $T = (1.2 + 0.2) = -0.2 \pm 0.1$ 

 $\kappa T = (4.9 \pm 0.2) r^{-0.2 \pm 0.1}$ 

 $\rightarrow$  Extrapolation failed

 $\Rightarrow$  change of the hot plasma characteristics above the inner edge of the CND

#### The CND: a barrier for the central plasma

 $\begin{array}{l} \mbox{Plasma ``inside'' the CND} \neq \mbox{Plasma of the CND} \\ \Rightarrow \mbox{absorbing material hypothesis fails.} \end{array}$ 



#### The "outside" plasma: a collimated outflow





#### The "outside" plasma: a collimated outflow





#### Outline

- The Galactic Center components
- 2 X-ray footprint of the CircumNuclear Disk
- 3 The X-ray emission of Sgr A\* from 1999 to 2018
  - 4 Conclusion

#### X-ray flares from Sgr A\*



### X-ray flares from Sgr A\*



### X-ray flares from Sgr A\*



#### The intrinsic flare distribution



#### Correction from the detection efficiency

Average flare detection efficiency:

$$\eta = rac{\int \int \pmb{p}_{ ext{facility}}(\pmb{x}) imes \textit{d}_{ ext{intr}}(\pmb{x}) \, \textit{d} \pmb{x}}{\int \int \textit{d}_{ ext{intr}}(\pmb{x}) \, \textit{d} \pmb{x}} < 1$$

 $\Rightarrow$  Correction of the observational exposures:  $\mathit{T}_{\rm corr}$  =  $\mathit{T}_{\rm obs} \times \eta$ 



Chandra XMM-Newton Swift

### Search for flaring rate change

- $\bullet\,$  Constant intrinsic flaring rate:  $2.4\pm0.2$  flares per day.
- Search for flux thresholds:
  - $\rightarrow$  top-to-bottom: the brightest flare is removed;
  - $\rightarrow$  bottom-to-top: the faintest flare is removed.
- Search for fluence thresholds:
  - $\rightarrow$  top-to-bottom: the most energetic flare is removed;
  - $\rightarrow$  bottom-to-top: the less energetic flare is removed.

#### Search for a flux threshold

|               | Flux                                                          | Date of the change point | First block     | Second block    | Significance |
|---------------|---------------------------------------------------------------|--------------------------|-----------------|-----------------|--------------|
|               | $(10^{-12}  \mathrm{erg}  \mathrm{s}^{-1}  \mathrm{cm}^{-2})$ |                          | (Flare per day) | (Flare per day) | (%)          |
| Top-to-bottom | < 6.4                                                         | 2013 May 25–July 27      | $1.7\pm0.2$     | $0.5\pm0.2$     | 99.9         |
| Bottom-to-top | > 6.4                                                         | 2014 Apr. 02-Aug. 30     | $0.7\pm0.1$     | $2.3\pm 0.5$    | 97.0         |



#### Search for a fluence threshold



#### Mechanisms creating such a change

- Change in the magnetic flux in synchroton radiation (Yuan et al. 2003):  $B \propto \dot{M}^{0.5} \propto F \rightarrow$  Change in the flux distribution  $t_{\rm f} \propto B^{-3/2} \rightarrow$  No change in the fluence distribution
- Tidal disruption of asteroids  $(Zubovas et al. 2012) \rightarrow$  Change of the energy distribution of emitting particles:



#### Mechanisms creating such a change

- Change in the magnetic flux in synchroton radiation (Yuan et al. 2003):  $B \propto \dot{M}^{0.5} \propto F \rightarrow$  Change in the flux distribution  $t_{\rm f} \propto B^{-3/2} \rightarrow$  No change in the fluence distribution
- Tidal disruption of asteroids  $(Zubovas et al. 2012) \rightarrow$  Change of the energy distribution of emitting particles:

$$\dot{N} \sim 8 \, m_5 \, L_{34}^{\frac{q+1}{3}} \, \mathrm{day}^{-1}$$



#### Outline

- 1 The Galactic Center components
- 2 X-ray footprint of the CircumNuclear Disk
- 3 The X-ray emission of Sgr A\* from 1999 to 2018
- 4 Conclusion

#### Conclusion

#### Conclusion

- $N_{\rm H,LoS} = 7.5^{+0.2}_{-0.4} \times 10^{22} \, {\rm cm}^{-2};$
- New relation of Predehl & Schmitt (1995) for the Galactic Center:  $N_{\rm H}/A_{\rm V}>2.69 imes10^{21}\,{\rm cm}^{-2}\,{
  m mag}^{-1}$ ;
- First image of the shadow of the CND in X-rays;
- The CND acts as a barrier for the central plasma;
- The "outside" region may correspond to the collimated outflow created by the mass-losing stars and possibly Sgr A\*.
- Study of the 1999-2018 flaring rate with XMM-Newton, Chandra and Swift:  $\Rightarrow$  The overall X-ray flaring rate is constant;
  - $\Rightarrow$  Rise of the bright flaring rate & decay of the faint flaring rate;
  - $\Rightarrow$  No more change of fluence distribution;
  - $\Rightarrow$  Change in the magnetic flux and/or spatial distribution of flares;
  - $\Rightarrow$  Rejection of the tidal disruption of asteroids to explain the overall flares.





1.3 mm recombination line H30lpha enhanced by maser emission

A cool accretion disk around Sgr A\* (Murchikova et al. 2019)

