

X-Ray Surveys reveal the past activity of the Galactic Center Super-Massive Black Hole and of the nuclear region

Andrea Goldwurm APC Paris, DAp/IRFU/CEA Saclay

Session parallèle: Les diverses facettes du centre galactique : des abords du trou noir à son environnement plus lointain

Outline

TOPICS:

- Introduction: Galactic Center SuperMassive Black Hole Sgr A*
- Search for past activity of Sgr A*
- Reflection from CMZ Clouds
- Hot gaz in the GC
- Gamma-ray Fermi Bubbles
- Summary

Collaborators:

- R. Terrier, D. Chuard (APC Paris, CEA Saclay)
- M. Clavel (IPAG Grenoble)
- G. Ponti (MPE Garching D, INAF Merate I)
- M. Morris (UCLA, US)
- M. Chernyakova, M. Walls (DCU, Dublin, Ir) and others

LETTER

Data (2000 – 2017): INTEGRAL, XMM-Newton (> 1.5 Ms GC surveys / obs.), Chandra

Recent publications: Terrier+ 2018, Chuard+ 2018, Ponti+ 2019 Nature

show the plane that interact or meterfore with the Galactic Centre out, where are correspond to the low-latitude edges of the term bubbles, a structure of mass and energy that have personably formed the terms Along the Galactic plane, the breadth of the newly discovered starters is limited to $\pm 50 \text{ pc}(\pm 0.4\%)$, while in the latitudinal direction.

/CSA-Sackay, Gil sur Welle, France. Ne mail: gabriele.pont@inat.it

Black Holes

- BH are space time regions delimited by a event horizon
- When a given mass M is within a radius < its Schwarzschild radius (M_{\odot} = Solar mass)

$$R \leq R_{S} = \frac{2 G M}{c^{2}} \cong 3 \frac{M}{M_{\odot}}$$
 (km)

- Not even light can escape: BH are invisible
- Extreme distortion of space-time: probe for General Relativity in strong field
 - Important Astrophysical objects but also for new physics at the frontier of Classical-Quantum theories (Quantum Gravity, String, ..)
- Two types of BH observed :
 - Stellar size $(3 100 M_{\odot})$
 - SMBH in GN ($10^6 10^{10} M_{\odot}$)
- Historically studied through X-rays and now Multi-wave-messenger Astronomy (GW)

Accretion / Ejection in Black Holes

Huge radiative luminosities and powerful particles ejections

Maximal (Eddington) Luminosity $L_E = 1.26 \ 10^{38} \left(\frac{M}{M_{\odot}}\right) \ erg/s$

Mainly in (UV) X and gamma rays

Galactic Bulge in Visible Light

Infrared View of the Galactic Center

Spitzer/ IRAC 3.6 - 8 µm

Scale: $1.9^{\circ} \times 1.4^{\circ} \approx 274 \text{ pc} \times 202 \text{ pc} (8 \text{ kpc})$

S-Cluster Star Orbits around a SMBH

Enclosed Mass M_{enc} = 4 10⁶ M_{\odot} within a radius of 124 AU (1500 R_s)

=> A Super Massive Black Hole

$$\begin{split} \mathsf{M}_{\bullet} &= 4 \; 10^6 \; \mathsf{M}_{\odot} \\ \mathsf{R}_{\mathsf{S}} &= 1.2 \; 10^{12} \; \mathsf{cm} \\ &= 0,08 \; \mathsf{AU} = 10 \; \mu \mathsf{as} \; (8 \; \mathsf{kpc}) \end{split}$$

Central Molecular Zone in Radio

MEERKAT

SMBH of the Galaxy

X-Ray Obs.: 1 keV - 1000 keV

- X-ray Observatories used in the surveys of the Central Molecular Zone from 2000 – 2017
- Energy bands: 0. keV 3 MeV Angular Res :1" – 12'
- Other: Suzaku (1-10 keV) and Nu-STAR (3-80 keV)

Sgr A*: GC SuperMassive Black Hole

Open questions

Sgr A* Super-Massive BH at the GC

- Very quite today: was it active before ? Did it have an AGN-like phase ? When how why ?
- Activity linked to mass accretion (galactic environment
- The SMBH and Galaxy (bulge) relations indicates co-evolution: feedback of BH to Gal ?
- Which power SMBH has injected in Galaxy ?
- Are there traces of large past activity from GC ?

Co-evolution of SMBH and Host-G

Kormendy & Lo 2013

Neutral Fe fluorescence line – Molecular Clouds

A. Goldwurm SFP, Nantes, 8/7/19: Galactic Center Super-Massive Black Hole

Fluorescent Iron line and reflected continuum from X-ray irradiation

VLA (20cm) and INTEGRAL (20-30 keV, contours)

- INTEGRAL (20-200 keV) Sgr B2 spectrum compared to ASCA & ART-P data at low energy
- Broadband spectrum: Fe I fluorescence + Compton scattering of a 10³⁹ erg/s luminosity outburst of Sgr A* ~300 yr back lasted > 10 yr (Revnivtsev et al 2004)

However hypothesis of particle induced nonthermal emission not completely excluded

Belanger et al. 2006

Time delay of the reflection component and parabola of equal time-delay points

- Points of equal time delay seen by an observer at infinity lie on an parabolic surface with focus on the illuminating source
- Light echoes easily produce variability in the reflected emission, even apparent superluminal motion (Sunyaev Churazov 98, Crampton Sunyaev 02)
- First variability of 6.4 keV line from Sgr B2 observed w/t different instruments (ASCA, Chandra, XMM, Suzaku) (Koyama+ 06 07 08, Inui+ 07)

Sgr A* Light-Echo Propagation in CMZ

Propagation seen from above the Galactic plane

Simulation of reflection from a putative distribution of molecular clouds in the CMZ of a short (1 yr) X-ray outburst from Sgr A* at different delays (< 1000 yr) Complicated pattern of morphological changes related to the matter distribution Courtesy of Maïca Clavel (PhD Thesis, 2014)

INTEGRAL GC survey: Discovery of gamma-ray variability of Sgr B2

- Decrease of Sgr B2 20 60 keV flux over 7 ys (cloud core size ~ 8 ly)
- Variation up to 40 %, compatible with the 6.4 keV decrease observed by Suzaku (compared to XMM)
- Consistent with hypothesis of reflection of hard X-ray emission: end of outburst => decrease
- Not with particle interpretation (Terrier et al. 2010)

XMM monitoring of 6.4 keV line from MC around Sgr A*: discovery of superluminal motion

Chandra CMZ Obs.: multiple Echo events

Chandra Survey 1999–2011: 6.4 keV Iron K line rapid variability from Sgr A molecular cloud. **MC1 MC2 not constant, Br1 rapid event** => reflection of 2 bright events (10³⁹ erg/s), 1 short (< 2 yr) and 1 longer (~ 10 yr) produced by Sgr A* in the past few 100 yrs. **Not possible to determine the delays because unknown location of clouds. Need for spectral modelling.** (Clavel et al. 2013, Clavel PhD 2014)

Monte Carlo Modeling of Reflection Spectrum

- Illumination (parallel beam) by external source, Power Law spectrum 1-300 keV and Ph. Index α
- Spherical cloud diameter D
 - Uniform, Variable (Gaussian, Expo) Density
 - Solar composition
- Effects:
 - Absorption and Fluorescence (Fe)
 - Multiple Scattering Walls et al. 2016
 - Bound-electrons
- Walls et al. 2016
- Chuard PhD 2018

Reflection Spectrum as a function of scattering angle

- Strong dependence of low energy spectum on Scattering angle θ
- Determination of θ allows the location of the reflecting clump line-of-sight position
- Applied first to Sgr B (XXM + Chandra + INTEGRAL) (Walls+ 2016)
- Then to Sgr C (Chuard+ 2018)
- Improved code of simulation and simultaneous fit of several MC clumps (XMM) data confirm with increased accuracy the previous estimations.

D. Chuard, PhD 2018

Fitting Reflection spectra of several MCs

The two-events ($L_X \sim 10^{39}$ erg/s) model is significant at 5 sigma c. I.

Delays of 2 events derived from all MCs data fit : $\Delta t1 = 84 + 16/-9 \text{ yr}$ Short Event $\Delta t2 = 238 + 19/-20 \text{ yr}$ Long Event (Chuard PhD Nov 2018, Chuard et al. 2019 in prep.)

CMZ Soft X-ray Line Emission as mapped by XMM-Newton

Red: Si xiii Green: S xv Blue: Ar xvii

CMZ Soft X-ray Line Emission: the structures

XMM Survey of Galactic Center polar regions

- 2000-2012: Large GC X-ray surveys (b ≈ +/- 0.5°)
- Large project to explore GCL-N Approved and performed in 2016 -2017
- Total of 46 XMM obs (25 ks) => 1.15 Ms ≈ 320 hr expo
- Images reveal structures of thermal gas extending towards Gal poles

Ponti+ 2019 Nature

Discovery of Galactic Center X-ray Chimneys of Hot Gas

From XMM GCL Survey + Archival data we detected and characterized

- 2 long (1°≈ 160 pc) thermal (T ≈ 7 10⁶ K°) structures extending N & S of GC (d=8 kpc), width: ±0.4° ≈ 50 pc
- Similar parameters and origin N / S
- N-Ch co-spatial with R/IR GCLN
- N-S Differences: galactic weather (ISM density)
- Origin within 50 pc from Sgr A*
- 15pc-lobes (L \approx 8 10³⁸ erg/s, t_s \approx 3 10⁴ yr) nested but not clearly related
- Total power: L_{x-Chi} ≈ 4 × 10³⁹ erg/s Time scale: t_s ≈ 3 10⁵ yr
- <u>Reach the Fermi Bubbles Bases !!</u>

XMM-Newton Soft X-ray GC 300 pc x 500 pc image: Red 1.5-2.6 Green 2.35-256 SXV line Blue 2.7-2.97 keV (continuum, no SXV ArXVII). Point Sources+dsh removed. Sgr A*, Base Fermi-B (Extrapolated Rosat)

A. Goldwurm SFP, Nantes, 8/7/19: Galactic Center Super-Massive Black Hole

NASA

The Galactic Center Chimneys

- Scheme of Chimneys and other X-ray structures of the GC region
- The Chimneys link the GC region to the Fermi Bubbles
- No clear connection to the bipolar lobes (not excluded either)
- Originated in the nuclear region (like the lobes) or over more extended region (50 pc in long.)
- Origin:
 - Large Star Formation Episodes
 - AGN-like activity of the Super-Massive Black Hole

The Galactic Center Chimneys

Summary

- Variable Neutral Iron fluorescence line and X-ray continuum from molecular clouds (MC) in the Galactic Center (GC) are due to reflection of past X-ray outbursts (> 10⁶ increase in Luminosity) from supermassive Black Hole Sgr A*
- The emission of all main MC varies => no single century long outburst
- At least 2 events of different time scales (2 yr, 10 yr) propagate in CMZ (as proposed by Clavel+ 2013)
- Monte Carlo spectral modelling on XMM/Chandra data of several MC allowed us to locate the clumps and to determine the time of the 2 events
- Work is in progress to establish X-ray emission of Sgr A* in the last millennium
- Discovery of 150-pc Chimneys of hot gas North and South of the GC
- Connect the GC region to the Fermi Bubbles: channel of energy injection
- Power 10^{39} erg/s , t $\approx 10^5$ yr => modest, compatible with the lower estimations of Fermi Bubbles power
- Origin: Star formation episodes or SMBH active phase ?
- Future observations: XMM, Chandra, Nu-STAR, ...
- Future observatories : eROSITA, XRISM, XIPE, Athena ...

