## Suspensions of active particles

## A. Grosberg J.F. Joanny

Collège de France
Physico-Chimie Curie Institut Curie

Congrès SFP, Nantes July 2019

## Outline

(2) Systems with two different temperatures

## Outline

(7) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy


## Outline

(7) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy
(3) Non-equilibrium phase transitions
- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation


## Outline

(7) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy

3 Non-equilibrium phase transitions

- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation

4 Ornstein-Uhlenbeck particles

- Dilute solutions
- Physics of small systems


## Outline

(7) Systems with two different temperatures

2 Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy
(3) Non-equilibrium phase transitions
- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation

4 Ornstein-Uhlenbeck particles

- Dilute solutions
- Physics of small systems



## Phase separation between active and non-active particles

 Active Brownian particles and passive particles Stenhammar

Particles with different diffusivities Weber et al.

Binary Mixtures of Particles with Different Diffusivities Demix
Simon N. Weber, ${ }^{1,}$ ØChristoph A. Weber, ${ }^{2}$ and Erwin Frey ${ }^{1,}$ 回


## Effective temperature

- Active particles: velocity $v_{0}$, rotational diffusion constant $D_{r}$
- Effective diffusion constant
$D_{\text {eff }}=D+v_{0}^{2} /\left(6 D_{r}\right)$
- Passive particles

$$
T_{p}=D \zeta
$$

- Active particles $T_{a}=T_{p}+\zeta \nu_{0}^{2} /\left(6 D_{r}\right)$


## Phase separation in systems with two temperatures

## Gene activity and nuclear domains Ganai et al

－Coarse grain genome into a $1 \mu \mathrm{~m}$ beads
－Active versus non－active beads with different $T_{a}=20 T_{e q}$


## Other examples

－Granules in cells T．Hyman，F．Julicher
－Molecular motors and diffusible particles on a filament
－Multiphase Interstellar Medium F．Combes


三 $\quad$ 引のヘ

## Outline

(1) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy
(3) Non-equilibrium phase transitions
- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation
(4) Ornstein-Uhlenbeck particles
- Dilute solutions
- Physics of small systems


## Two particles at different temperatures

## Langevin Equations

$$
\begin{aligned}
\zeta_{\mathcal{A}} \dot{x}_{\mathcal{A}} & =-\partial_{\mathcal{A}} u^{\mathcal{A B}}+\left(2 T_{\mathcal{A}} \zeta_{\mathcal{A}}\right)^{1 / 2} \xi_{\mathcal{A}}(t) \\
\zeta_{\mathcal{B}} \dot{x}_{\mathcal{B}} & =-\partial_{\mathcal{B}} u^{\mathcal{A B}}+\left(2 T_{\mathcal{B}} \zeta_{\mathcal{B}}\right)^{1 / 2} \xi_{\mathcal{B}}(t)
\end{aligned}
$$

- Each particle in contact with a reservoir at a fixed temperature
- $\xi_{\mathcal{A}, \mathcal{B}}$ are Gaussian white noises of unit variance


## Relative motion

- Equation for the relative distance $r=x_{\mathcal{A}}-x_{\mathcal{B}}$

$$
\zeta_{r} \dot{r}=f(r)+\left(2 \zeta_{r} \bar{T}\right)^{1 / 2} \xi_{r}
$$

- Relative mobility $\mu_{r}=\mu_{\mathcal{A}}+\mu_{\mathcal{B}}$
- Mobility averaged temperature $\bar{T}=\left(\mu_{\mathcal{A}} T_{\mathcal{A}}+\mu_{\mathcal{B}} T_{\mathcal{B}}\right) /\left(\mu_{\mathcal{A}}+\mu_{\mathcal{B}}\right)$
- Boltzmann distribution $P(r) \sim \exp -u^{\mathcal{A B}}(r) / \bar{T}$


## Non equilibrium effects

## Center of diffusion motion

- Center of diffusion $R=\frac{D_{\mathcal{A}} x_{\mathcal{A}}+D_{\mathcal{B}} x_{\mathcal{B}}}{D_{\mathcal{A}}+D_{\mathcal{B}}}$
- Langevin equation

$$
\left(\zeta_{\mathcal{A}}+\zeta_{\mathcal{B}}\right) \dot{R}=\frac{T_{\mathcal{B}}-T_{\mathcal{A}}}{\bar{T}} f(r)+\sqrt{2\left(\zeta_{\mathcal{A}}+\zeta_{\mathcal{B}}\right) \frac{T_{\mathcal{A}} T_{\mathcal{B}}}{\bar{T}}} \xi_{R}(t)
$$

- Effective temperature $\frac{T_{A} T_{B}}{T}$
- Diffusion constant $D_{R}=\frac{1}{1 / D_{\mathcal{A}}+1 / D_{\mathcal{B}}}+\frac{1}{2} \frac{\left(T_{\mathcal{A}}-T_{\mathcal{B}}\right)^{2}}{\bar{T}} \frac{\zeta_{\mathcal{A}} \zeta_{\mathcal{B}}}{\left(\zeta_{\mathcal{A}}+\zeta_{\mathcal{B}}\right)^{3}}$
- Non-equilibrium contribution


## Energy flux

- Energy flux from $\mathcal{B}$ particle to $\mathcal{A}$ particle $w_{\mathcal{B} \rightarrow \mathcal{A}}=\left\langle-\dot{X}_{\mathcal{A}} \partial_{\mathcal{A}} u^{\mathcal{A} \mathcal{B}}\right\rangle=\left\langle+\dot{x}_{\mathcal{B}} \partial_{\mathcal{B}} u^{\mathcal{A} \mathcal{B}}\right\rangle$
- $W_{\mathcal{B} \rightarrow \mathcal{A}}=\frac{T_{\mathcal{B}}-T_{\mathcal{A}}}{\bar{T}\left(\zeta_{\mathcal{A}}+\zeta_{\mathcal{B}}\right)}\left\langle\left(\partial_{r} u^{\mathcal{A B}}(r)\right)^{2}\right\rangle$


## Violation of equipartition of energy

## Inertial effects and kinetic energy

$$
\begin{aligned}
m_{\mathcal{A}} \ddot{x}_{\mathcal{A}}+\zeta_{\mathcal{A}} \dot{x}_{\mathcal{A}} & =-\partial_{\mathcal{A}} u^{\mathcal{A B}}+\left(2 T_{\mathcal{A}} \zeta_{\mathcal{A}}\right)^{1 / 2} \xi_{\mathcal{A}}(t) \\
m_{\mathcal{B}} \ddot{x}_{\mathcal{B}}+\zeta_{\mathcal{B}} \dot{x}_{\mathcal{B}} & =-\partial_{\mathcal{B}} u^{\mathcal{A B}}+\left(2 T_{\mathcal{B}} \zeta_{\mathcal{B}}\right)^{1 / 2} \xi_{\mathcal{B}}(t)
\end{aligned}
$$

- Finite kinetic energy $\left\langle\frac{1}{2} m_{A} \dot{X}_{\mathcal{A}}^{2}\right\rangle=\frac{1}{2} T_{\mathcal{A}}^{\text {eff }}$


## Effective kinetic temperature

- Harmonic interaction $u^{\mathcal{A B}}=\frac{1}{2} \kappa r^{2}$, elastic time $\tau_{e}=1 /\left(\kappa \mu_{r}\right), \tau=m_{\mathcal{A}} / \zeta_{\mathcal{A}}=m_{\mathcal{B}} / \zeta_{\mathcal{B}}$

$$
T_{\mathcal{A}}^{\text {eff }}=T_{\mathcal{A}}+\frac{2 \tau}{\tau+\tau_{e}}\left(T_{\mathcal{B}}-T_{\mathcal{A}}\right) \frac{\mu_{\mathcal{A}} \mu_{\mathcal{B}}}{\mu_{r}^{2}}
$$

- Energy conservation for particle A

$$
w_{\mathcal{B} \rightarrow \mathcal{A}}=-\left\langle\zeta v^{2}\right\rangle+\langle v \xi\rangle
$$

- Effective temperature

$$
w_{\mathcal{B} \rightarrow \mathcal{A}}=\frac{T_{A}}{\tau_{A}}-\frac{T_{A}^{e f f}}{\tau_{A}}
$$

## Outline

(1) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy
(3) Non-equilibrium phase transitions
- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation
(4) Ornstein-Uhlenbeck particles
- Dilute solutions
- Physics of small systems


## Fokker Planck equation

## Fokker Planck Equation of a solution

- Pair potential interactions

$$
U=\frac{1}{2} \sum_{i \neq j}^{N_{A}} u^{\mathcal{A} \mathcal{A}}\left(\mathbf{r}_{i}^{\mathcal{A}}-\mathbf{r}_{j}^{\mathcal{A}}\right)+\sum_{i}^{N_{\mathcal{A}}} \sum_{j}^{N_{\mathcal{B}}} u^{\mathcal{A B}}+\frac{1}{2} \sum_{i \neq j}^{N_{\mathcal{B}}} u^{\mathcal{B B}}
$$

- Fokker Planck equation $\dot{P}=\sum_{i} \partial_{i}\left(\partial_{i} \cup P / \zeta_{i}+T_{i} \partial_{i} P / \zeta_{i}\right)$


## Concentration correlations

- Hierarchy of equations for the cumulants of the concentration

$$
\begin{aligned}
\frac{\partial c^{\mathcal{A}}(\mathbf{r})}{\partial t} & =\frac{1}{\zeta_{\mathcal{A}}} \partial_{\mathbf{r}}\left[\int \frac{\partial u^{\mathcal{A} \mathcal{A}}}{\partial \mathbf{r}} G_{2}^{\mathcal{A} \mathcal{A}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}\right] \\
& +\frac{1}{\zeta_{\mathcal{A}}} \partial_{\mathbf{r}}\left[\int \frac{\partial u^{\mathcal{A B}}}{\partial \mathbf{r}} G_{2}^{\mathcal{A} \mathcal{B}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}\right]+\frac{T_{\mathcal{A}}}{\zeta_{\mathcal{A}}} \nabla_{\mathbf{r}}^{2} c^{\mathcal{A}}(\mathbf{r})
\end{aligned}
$$

- Pair correlation functions

$$
\begin{aligned}
& G_{2}^{\mathcal{A} \mathcal{B}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{i}^{N_{\mathcal{A}}} \sum_{j}^{N_{\mathcal{B}}} \int \delta\left(\mathbf{r}_{i}^{\mathcal{A}}-\mathbf{r}\right) \delta\left(\mathbf{r}_{j}^{\mathcal{B}}-\mathbf{r}^{\prime}\right) P(\{\mathbf{r}\}) d\{\mathbf{r}\}= \\
& c^{\mathcal{A}}(\mathbf{r}) c^{\mathcal{B}}\left(\mathbf{r}^{\prime}\right) g^{\mathcal{A} \mathcal{B}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
\end{aligned}
$$

- Depend on 3 body correlation functions


## Dilute solution: effective thermodynamics

## Conservation equations

- Low density limit $g^{\mathcal{A} \mathcal{A}}=\exp -u^{\mathcal{A} \mathcal{A}} / T_{\mathcal{A}}, g^{\mathcal{B B}}=\exp -u^{\mathcal{B B}} / T_{\mathcal{B}}, g^{\mathcal{A B}}=\exp -u^{\mathcal{A B}} / \bar{T}$
- Conservation equation with short range interactions

$$
\frac{\partial c^{\alpha}(\mathbf{r})}{\partial t}=\frac{1}{\zeta_{i}} \frac{\partial}{\partial \mathbf{r}}\left(c^{\alpha} \frac{\partial \mu^{\alpha}}{\partial \mathbf{r}}\right)=-\frac{\partial \mathbf{j}_{\alpha}}{\partial \mathbf{r}}
$$

- Particle currents $\mathbf{j}_{\mathcal{A}, \mathcal{B}}=-\frac{1}{\zeta_{\mathcal{A}, \mathcal{B}}} \frac{\partial \mu_{\mathcal{A}, \mathcal{B}}}{\partial \mathbf{r}}$


## Effective thermodynamics

- Chemical potentials derive from an effective free energy $f=T_{\mathcal{A}} c^{\mathcal{A}} \ln \left(c^{\mathcal{A}} / e\right)+T_{\mathcal{B}} c^{\mathcal{B}} \ln \left(c^{\mathcal{B}} / e\right)+(1 / 2) T_{\mathcal{A}} B_{\mathcal{A}} c_{\mathcal{A}}^{2}+(1 / 2) T_{\mathcal{B}} B_{\mathcal{B}} c_{\mathcal{B}}^{2}+\bar{T} B_{\mathcal{A B}} C^{\mathcal{A}} c^{\mathcal{B}}$
- Nonequilibrium virial coefficients $B_{\alpha \beta}=\int\left[1-e^{-u^{\alpha \beta}(\mathbf{r}) / T_{\alpha \beta}}\right] d^{3} \mathbf{r}$
- Different temperatures for different virial coefficients $T_{\mathcal{A B}}=\bar{T}$
- Osmotic pressure can be calculated from the effective free energy


## Phase diagram E. Ilker

## Spinodal instability

- Volume fractions $\phi_{\alpha}=c^{\alpha} B^{\alpha} / 8$, physical excluded volume condition $\phi_{\mathcal{A}}+\phi_{\mathcal{B}} \leq 1$
- Spinodal stability limit $\frac{8 \phi_{\mathcal{A}}}{1+8 \phi_{\mathcal{A}}} \frac{8 \phi_{B}}{1+8 \phi_{\mathcal{B}}}>\frac{T_{\mathcal{A}} T_{\mathcal{B}}}{T^{2}} \frac{B_{A B}^{2}}{B_{\mathcal{A}} B_{B}}$


## Triangular Phase diagram

- Same equilibrium conditions as thermodynamic phase diagram
- If $B_{\mathcal{A} \mathcal{A}}=B_{\mathcal{A B}}=B_{\mathcal{B B}}=B$ phase separation exists only if $T_{\mathcal{B}} / T_{\mathcal{A}}>4$

b)



## Depletion interactions in hard sphere solutions Akasura and Oosawa

## Depletion interaction

- Force between the two spheres


$$
f=P_{e x t} S
$$

- Using the ideal gas pressure, this gives the exact three body interactions for hard spheres
- Potential of mean force $w(r)$ obtained by integration of the force
- Pair distribution function

$$
g_{\alpha \beta}=\exp -\frac{w_{\alpha \beta}(r)}{T_{\alpha \beta}}
$$

Conservation equations

- Go back to the dynamic equations and insert the pair distribution function
- Particle currents $\mathbf{j}_{\mathcal{A}, \mathcal{B}}=-\frac{c_{\mathcal{A}, \mathcal{B}}}{\zeta_{\mathcal{A}, \mathcal{B}}} M_{\mathcal{A}, \mathcal{B}}$
- No well defined chemical potential, no equivalent thermodynamic
- Phase diagram directly obtained from the dynamic equation


## Non-equilibrium steady state, Phase diagram



- Smaller region of phase separation
- Spinodal line and critical point
- No complete determination of steady state phases.
- Beyond third virial coefficient Cates and Mao
b)


$T_{A} / T_{B}$


## Outline

(1) Systems with two different temperatures
(2) Interaction between a cold and a hot colloidal particle

- Langevin dynamics
- Equipartition of energy
(3) Non-equilibrium phase transitions
- Dilute solutions of hot and cold particles
- Phase diagram
- Beyond second virial approximation
(4) Ornstein-Uhlenbeck particles
- Dilute solutions
- Physics of small systems


## Langevin Equation with colored noise

## Ornstein-Uhlenbeck particles

- Langevin Equation $\zeta \frac{d x}{d t}=f(x)+\eta(t)$
- Colored noise $\langle\eta(0) \eta(t)\rangle=k T \zeta / \tau \exp -|t| / \tau$
- Persistent random walk with a velocity $v_{0}, k T=\zeta v_{0}^{2} \tau$
- Run length $v_{0} \tau$

Two parameters description

- Position and random force

$$
\begin{aligned}
\zeta \frac{d x}{d t} & =f(x)+\eta(t) \\
\tau \frac{d \eta}{d t}+\eta & =\xi(t)
\end{aligned}
$$

- White noise $\langle\xi(0) \xi(t)\rangle=2 k T \zeta \delta(t)$
- Analogy with a particle with inertia $\tau \zeta \frac{d^{2} x}{d t^{2}}+\left(\zeta-\tau \frac{d f}{d x}\right) \frac{d x}{d t}-f(x)=\xi(t)$


## Stress tensor and pressure

## Fokker-Planck equation

$\partial_{t} P(x, \eta)=-\frac{1}{\zeta} \partial_{x}[(\eta+f(x)) P(x, \eta)]+\frac{1}{\tau} \partial_{\eta}[\eta P(x, \eta)]+\frac{\zeta T}{\tau^{2}} \partial_{\eta}^{2}[P(x, \eta)]$

- Advection in $x$ and $\eta$, Diffusion in $\eta$
- Current loops in $(x, \eta)$ space


## Moment expansion

- Particle density $\rho=\int d \eta P(x, \eta)$
- First moment $f_{i}(\vec{x})=-\left\langle\eta_{i}\right\rangle(\vec{x})$
- Second moment $f_{j}(\vec{x}) \rho(\vec{x})=\frac{\tau}{\zeta} \partial_{x_{i}}\left[\left(\left\langle\eta_{i} \eta_{j}\right\rangle-\left\langle\eta_{i}\right\rangle\left\langle\eta_{j}\right\rangle\right) \rho(\vec{x})\right]$


## Stress tensor

- Local force balance
- Stress tensor $\sigma_{i j}=-\frac{\rho \tau}{\zeta}\left\langle\delta \eta_{i} \delta \eta_{j}\right\rangle$
- Pressure $\Pi=\frac{1}{3} \frac{\rho \tau}{\zeta}\left\langle\overrightarrow{\delta \eta}^{2}\right\rangle$
- No external force : Ideal gas $\left\langle\overrightarrow{\delta \eta}^{2}\right\rangle=\frac{3 k T \zeta}{\tau}$, pressure $\Pi=k T \rho$ Solon et al.


## Potential barrier and Particle pumping

## Pumping by an asymmetric periodic potential


－Finite flux

－Penetration length in the harmonic potential $U=U_{0}\left(\frac{x}{L}\right)^{2}=\frac{1}{2} \kappa x^{2}$ ， $I_{\text {OUP }}=\left(\frac{k T}{\kappa(\kappa \tau / \zeta+1)}\right)^{1 / 2}$
－Crossing a potential barrier
－$\tau=0$ energy dominated，Boltzmann factor
－$\kappa \tau / \zeta \gg 1$ ，force dominated $\eta \geq 2 U_{0} / L$
－Asymmetry in the force dominated regime

- Non-equilibrium phase separation due to temperature (activity) contrast
- Energy fluxes between hot and cold thermal bath
- Effective thermodynamics with a well defined free energy at low concentration
- No effective thermodynamics at higher concentration
- Other examples of phase separation in active systems
$\star$ Non homogeneous solutions, surface tension between two phases E. Ilker
$\star$ Polymers and copolymers with monomers at different temperatures Hsuan Yi Chen
« Self-diffusion in a mixture of active and passive particles E. Ilker, M. Castellana
- Ornstein-Uhlenbeck Particles
- Strongly non-equilibrium effects in small systems
- Curvature effects in a 2d system
- Repulsive depletion forces C. Sanford

