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Hiroshige 1797-1858
Narito vortex

Définition: Turbulence describes the state of a 
fluid (liquid or gas) in which velocity is in a 
swirling state.
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Turbulence: Re>>1

Navier-Stokes equations are they well-posed?
Are they any singularities?

Open basic question:

What is turbulence?

Puzzle ⋕ 0 of turbulence
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Vortices in the Universe…



Vortices hierarchy on the Earth



Turbulent flow in SPIV
Turbulent flow in 4D-PTV

ANR EXPLOIT: F. Daviaud, P. Debue, B. Dubrulle, J-M. Foucault, J-P. Laval, Y. Ostovan, V. Padilla, V. Valori, C. Wiertel

4 fast cameras Laser

Vorticity hierarchy in the lab



Seymour Narrows, 
Between Vancouver and  Quadra Islands
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Self-similarity of vortices in turbulence
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3 puzzles set by the vortices hierarchy

? ⋕ 3

3 more puzzles of turbulence
Practical importance for DNS and theories

? ⋕ 2

? ⋕ 1



Solving ⋕ 1 and ⋕ 2 puzzles:

How are Lmax and Lmin selected?
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Energy dissipation! Without forcing, unique equilibrium state
u=0
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With forcing (possibly multiple) out-of-equilibrium
stationary state

The forcing matters
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Cf Joule’s experiment: 
Work measured by Torques applied at Shafts
=Heat flux measured By keeping T constant

Rousset et al, RSI 85, 103908 (2014);
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Energy balance in a turbulent flow

/012= /3044 ≡ 67)8

dE = dW + dQ

The dissipation matters



!" ∫ $
%

& '(
)= ∫*. , '()- ν ∫ ∇, & '()

Energy balance in a turbulent flow

/012= /3044 ≡ 678

1st caracteristic scale: L: size of the stirrer

Injection scale

Solution of puzzle ⋕ 1
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Energy balance in a turbulent flow

/012= /3044 ≡ 678

2nd caracteristic scale

Kolmogorov scale
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Solution of puzzle ⋕ 2



Work

Heat

Injection scale

Energy cascade

Dissipative scale
(viscosity)

Radius propeller
Blade height

Debue et al  et al., PRF  (2018), 
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Preliminary phenomenological picture

Lmax Lmin



Solving ⋕ 3 puzzle:

How is spectral exponent selected?



Numerical simulations NSE Experiments for a wide class 
of forcing conditions
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By dimensional analysis
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How is the exponent h=1/3 selected?
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The spectral exponent is very robust but not 
given by dimensional analysis

? ?

/(") ≈ "*,



Numerical simulations NSE Experiments for a wide class 
of forcing conditions
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⋕ 1 Suspect: the energy dissipation
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Glycerol+Water Sodium Helium 4

Re=3500: Turbulence

Saint-Michel et al, POF 26, 125109 (2014);VKE + VKS collaboration + SHREK collaboration

A closer look at energy dissipation 



Non-dimensional energy dissipation per unit mass 
is constant at large Reynolds

Independent of viscosity?
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Building of very large gradients at small scale… Singularity?
How to measure them/quantify them/understand this?

P. K. Yeung et al. PNAS 2015;112:41:12633-12638

Where we meet again puzzle ⋕ 4



Duchon&Robert. Nonlinearity  (2000),
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Inertial dissipation= singularity/large gradient  detector!

Local energy budget for irregular fields
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Velocity increment!u=u(x+r)-u(x)



Estimation of dissipation and circulation production rates. With our velocity fields, we can

compute the velocity increments �u(r) = u(x2D + r2D)� u(x2D), From this, we define two scale

dependent scalar functions: the local energy dissipation rate D`(u) 15:

D`(u) =
1

4

Z

V
d3r (rG`)(r) · �u(r) |�u(r)|2, (4)

where V is a full disk, and the local rate of velocity circulation decay16:

d
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C
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C being any contour advected by the fluid and G is a spherically symmetric function of r

given by:

G`(r) =
1

N
exp(�1/(1� (r/2`)2)), (7)

where N is a normalization constant such that
R
d3rG`(r) = 1.

In addition, we may also compute the local rate of viscous dissipation at the resolution scale,

given by:

D⌫
�x(u) = ⌫SijSij, (8)
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Supplementary figure 5: Maps of the instantaneous dimensionless coarse-grained inertial energy

dissipation D`(u) as a function of scale ` for a flow at Re ⇡ 3 ⇥ 105. a) Maps of D`(u) at three

different scales. b) Maps of D`(u) at different scales, along a line going through a peak in inertial

dissipation. The colors code D`(u). The scale is expressed in units of the grid step: 0.25 mm.

this computation, we have used a spherically symmetric function of x given by:

G`(r) =
1

N
exp(�1/(1� (r/(2`)2)), (1)

where N is a normalization constant such that
R

d
3
rG`(r) = 1. According to 1, the results should

not depend on the choice of this function, in the limit ` ! 0.

To estimate the scaling range of the extreme event, we have performed the computation of

D`(u) at different resolutions, using different averaging windows to reconstruct the velocity flow

from the same image. An example is provided in Fig. 6. One sees that, as the resolution is

increased, the region of elevated D`(u) becomes sharper and sharper, but globally remains at the

same location (emphasized by the white dot). On the other hand, the plot of D`(u) at this location

7

-Kuzzay D. et al. (2017), 
Nonlinearity 

Applying the DR detector in von Karman flow
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LECTURES ON THE ONSAGER CONJECTURE

ROMAN SHVYDKOY
Department of Mathematics, Stat. and Comp. Sci., M/C 249,

University of Illinois, Chicago, IL 60607, USA

(Communicated by [the associate editor name])

ABSTRACT. These lectures give an account of recent results pertaining to the celebrated
Onsager conjecture. The conjecture states that the minimal space regularity needed for a
weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based
on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux,
introduce Onsager criticality, find a positive solution to the conjecture in Besov spaces of
smoothness 1/3. We illuminate important connections with the scaling laws of turbulence.
Results for dyadic models and a complete resolution of the Onsager conjecture for those
is discussed, as well as recent attempts to construct dissipative solutions for the actual
equation.

The article is based on a series of four lectures given at the 11th school “Mathematical
Theory in Fluid Mechanics” in Kácov, Czech Republic, May 2009.

”...in three dimensions a mechanism for
complete dissipation of all kinetic
energy, even without the aid of
viscosity, is available.”

L. Onsager, 1949

1. Lecture 1: motivation, Onsager criticality.

1.1. Onsager’s original conjecture. The motion of an ideal homogeneous (with constant
density 1) incompressible fluid is described by the system of Euler equations given by

∂u

∂t
+ (u ·∇)u = −∇p, (1)

∇ · u = 0, (2)
where u is a divergence-free velocity field, and p is the internal pressure. We assume that
the fluid domain Ω here is either periodic or the entire space. It is an easy consequence of
the antisymmetry of the nonlinear term in (1) and the incompressibility of the fluid that the
law of energy conservation holds for smooth solutions:

∫

Ω
|u(t)|2dx =

∫

Ω
|u0|2dx, for all t ≥ 0. (3)

2000 Mathematics Subject Classification. Primary: 76F02, 76B03; Secondary: 42B37.
Key words and phrases. Euler equation, Navier-Stokes equation, weak solutions, turbulence, Onsager conjec-

ture, Besov spaces, dyadic models.
The author is grateful to the Department of Mathematical Analysis, Faculty of Mathematics and Physics,

Charles University, and Jindřich Nečas Center for Mathematical Modeling for warm hospitality during the prepa-
ration of these notes. The research is partially supported by the NSF grant DMS - 0907812.
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If  h ≤ 1/3 à Dissipation through irregularities (singularities)
` ⇡ 0In the limit of

Without viscosity !

If  h > 1/3 à Euler equation conserves energy,
Dissipation in Navier-Stokes by viscosity.

�u(`) ⇠ `h

D u( ) x[ ]∝ limℓ→0 ℓ3h−1

Duchon&Robert. Nonlinearity  (2000),

D(u) = lim
`!0

1

4

Z

r`
d3r r�`(r) · �ur|�ur|2

Inertial dissipation= singularity/large gradient  detector!

Kolmogorov spectrum exponent is the « critical value » !!!!
Is this the only one? -> look statistics of velocity increments

Kolmogorov: h=1/3; D=e=cte

Solving puzzle ⋕ 3: Onsager’s conjecture
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Not observed!

Saw et al et al  et al. JFM (2018)

Puzzle ⋕ 1: 3 = 4
5 67 89: ;86<;=!

Kolmogorov spectrum exponent h=1/3 is the « critical value » !!!! 
It is not unique…

What is the physics involved?
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Local energy balance in turbulence



Solving puzzle ⋕ 4:
Is h=1/3 the only possible exponent?

Look at the physics of turbulence at 
Kolmogorov scale



ANR Exploit: collaboration Saclay/LML: Debue, Shukla, Cuvier, Saw, Wiertel, Padilla, Daviaud, Dubrulle,  Foucaut, Laval

L

⌘

Color map: M. Farge, 1990  L'Aéronautique et l'Astronautique, 140, 24-33
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Large events of D(u)



Saw, Kuzzay et al. (2016), Nature-Comm. 7
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Color map: M. Farge, 1990  L'Aéronautique et l'Astronautique, 140, 24-33
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2D Structure of large events of inertial dissipation



ANR Exploit: collaboration Saclay/LML: Debue, Shukla, Cuvier, Saw, Wiertel, Padilla, Daviaud, Dubrulle,  Foucaut, Laval

h =1/ 3

h = −1
D

Structure of large events of inertial dissipation

Hierachy of h!



3D Structure of large events of inertial dissipation

Swirling filament

High enstrophy in the 
Vicinity of the event

P. Debue PhD Thesis; ANR EXPLOIT



Solving ⋕ 0 puzzle:

Are these footprints of singularities?

Navier-Stokes equations are they well-posed?
Are they any singularities?

Open basic question:



Axisymmetric case: classification started by Landau in 1944

Li, Yan Yan,  (2016)
H. Faller M2 Thesis
H. Faller et al, in preparation (2017)
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A possible suspect of NS singularity



H. Faller M2 Thesis
H. Faller et al, in preparation (2017)

3D footprints of the -1 degre homogeneous solution



H. Faller M2 Thesis
H. Faller et al, in preparation (2017)

2D footprints of the -1 degre homogeneous solution



• Turbulence is plagued with puzzles of fundamental importance. One of them is 
connected with possible quasi-singularities or singularities of the NSE.

• We have found possible footpints of such quansi singularities. They are linked with 
coherent structures, living below the Kolmogorov scale, 

• -> Impact on DNS of NSE!!!!

Conclusions and perspectives
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• Turbulence is plagued with puzzles of fundamental importance. One of them is 
connected with possible quasi-singularities or singularities of the NSE.

• We have found possible footpints of such quansi singularities. They are linked with 
coherent structures, living below the Kolmogorov scale, 

• -> Impact on DNS of NSE!!!!

• Perspective:
The study of the dynamics and properties of these structures is underway, using 4D-PTV

We are currently building a larger experiment to explore sub-Kolmogorov regimes, to look 
for more singular  structures).

Conclusions and perspectives
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Present experiment GVK experiment

Re=106

h=0,05 mm

Possibility to explore sub-Kolmogorov scales
Detection of stronger velocity gradients and quasi-singularities
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R=50 cm
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h=2 mm

Prespectives: GVK experiment
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