Advances in Machine Learning in HEP: Deep Learning, GAN and more

David Rousseau LAL-Orsay

rousseau@lal.in2p3.fr

JINR day in France 15th Feb 2018

ML in HEP

- □ Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- □ At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- \square In most cases, Boosted Decision Tree with Root-TMVA, on ~ 10 variables
- For example, impact on Higgs boson sensitivity at LHC:

Analysis	Data taking year	No ML sensitivity	ML sensitivity	Relative data gain
CMS H→γγ	2011-2012	2.2	2.7	51%
ATLAS H→τ⁺τ	2011-2012	2.5	3.4	85%
ATLAS VH→bb	2011-2012	1.9	2.5	73%
ATLAS VH→bb	2015-2016	2.8	3.0	15%
CMS VH→bb	2011-2012	1.4	2.1	125%

→~50% gain on LHC running

ML in HEP

Meanwhile, in the outside world :

- "Artificial Intelligence" not a dirty word anymore!
- □ We (in HEP) have realised we're been left behind! Trying to catch up now...
- This talk on very selected promising use of advanced ML in HEP

ML Basics

BDT in a nutshell

- ☐ Single tree (CART) <1980
- □ AdaBoost 1997 : rerun increasing the weight of misclassified entries → Boosted Decision Trees (Gradient BDT, random forest...)

Classifier basics

Neural Net in a nutshell

- Neural Net ~1950!
- But many many new tricks for learning, in particular if many layers (also ReLU instead of sigmoïd activation)
- "Deep Neural Net" up to 100 layers
- □ Computing power (DNN training can take days even on GPU)

Deep learning

ML in analysis

Deep learning for analysis

1402.4735 Baldi, Sadowski, Whiteson

- Low level variables:
 - 4-momentum vector
- High level variables:
 - Pair-wise invariant masses
- Deep NN outperforms NN, and does not need high level variables
- DNN learns the physics ?

Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

- □ H tautau analysis at LHC: H→tautau vs Z→tautau
 - Low level variables (4-momenta)
 - High level variables (transverse mass, delta R, centrality, jet variables, etc...)

- Here, the DNN improved on NN but still needed high level features
- Both analyses withDelphes fast simulation
- ~100M events used for training (>>100* full G4 simulation in ATLAS)

Systematics-aware training

- Our experimental measurement papers typically ends with
 - o measurement = m $\pm \sigma(stat) \pm \sigma(syst)$
 - o σ(syst) systematic uncertainty: known unknowns, unknown unknowns...
- □ Name of the game is to minimize quadratic sum of : $\sigma(\text{stat}) \pm \sigma(\text{syst})$
- \square ML techniques used so far to minimise $\sigma(\text{stat})$
- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) $\pm \sigma$ (syst) is an open problem
- \square Worrying about σ (syst) untypical of ML in industry
- ☐ However, a hot topic in ML in industry: *transfer learning*
- □ E.g.: train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP: we train with Signal and Background which are not the real one (MC, control regions, etc...) → source of systematic Stvances in ML in HEP David Rousseau, JINR day in France, 15 Feb 2018

Syst Aware Training: adversarial

ML in reconstruction

Jet Images

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

- Distinguish boosted W jets from QCD
- Particle level simulation
- Average images:

Jet Images: Convolution NN

Variables build from CNN outperform the more usual ones

- What the CNN sees (the "cat" neurone")
- Now need proper detector and pileup

simulation

→3Dimension

David Rousseau, JINR day in Fra

RNN for b tagging

- BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed like the tracks for b-quark jet tagging?
- Recurrent Neural Networks have seen outstanding performance for processing sequence data
 - Take data at several "time-steps", and use previous time-step information in processing next time-steps data
- ☐ For b-tagging, take list of tracks in jet and feed into RNN
 - o Basic track information like d0, z0, pt-Fraction of jet, ...
 - Physics inspired ordering by d0-significance
- RNN outperforms other IP algorithms
 - No explicit vertexing, still excellent performance
 - First combinations with other algorithms in progress
- Learning on sequence data may be important in other places!

End to end Learning

End to end learning

□ Train directly for signal on « raw » event ?

Start from RPV Susy search

ATLAS-CONF-2016-057

□ Fast Simulated events with Delphes

Bhimji et al, 1711.03573

(b) gluino cascade decay

- Project energies on 64x64 ηxφgrid
- Compare with usual jetReconstruction and physicsAnalysis variables such as:

$$M_{\rm J}^{\Sigma} = \sum_{\substack{p_{\rm T} > 200 \, \text{GeV} \\ |\eta| \le 2.0}}^{4} m^{\rm jet}$$

avid Rousseau, on traday in transco, 15th ob 2010

End to end learning (2)

End to end learning (3)

- >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-momenta
- → CNN extract information from energy grid which is lost in the jets?
- Not sure they should compare to applying DL on the jets Advances in ML in HEP David Rousseau, JINR day in France, 15 Feb 2018

ML in simulation

Generative Adversarial Network

Condition GAN

Text to image

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

GAN for simulation

Tracking Machine Learning challenge 2018

A collaboration between ATLAS and CMS physicists, and Machine Learners

TrackML: Motivation

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective: increased pileup: Run 1 (2012): <>~20, Run 2 (2015): <>~30, Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)
- Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
- → Tracking challenge to be launched on Kaggle this March 2018

Wrapping-up

ML playground

ML Collaborations

- Many of the new ML techniques are complex→difficult for HEP physicists alone
- ML scientists (often) eager to collaborate with HEP physicists
 - o prestige
 - o new and interesting problems (which they can publish in ML proceedings)
- ☐ Takes time to learn common language
- Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCb
- □ Access to experiment internal data an issue, but there are ways out → more and more Open Dataset
- Very useful/essential to build HEP ML collaborations : study on shared dataset, thesis (Computer Science or HEP)
- There is always a friendly Machine Learner on a campus!

Multitude of HEP-ML events

Conclusion

- We (in HEP) are analysing data from multi-billion € projects→should make the most out of it!
- Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
- □ Some of these are ~easy, most are complex: open source software tools are ~easy to get, but still need (people) training, know-how
- More and more open datasets/simulators
- More and more HEP and ML workshops, forums, schools, challenges
- More and more direct collaboration between HEP researchers and ML researchers
- ☐ HEP will need more and more access to (GPU) training resources
- Never underestimate the time for :
 - (1) Great ML idea→
 - (2) ...demonstrated on toy dataset→
 - (3) ...demonstrated on real experiment analysis/dataset →
 - o (4) ...experiment publication using the great idea

Backup

Syst Aware training: pivot

TrackML: engaging Machine Learners

- Suppose we want to improve the tracking of our experiment
- We read the literature, go to workshops, hear/read about an interesting technique (e.g. ConvNets, MCTS...). Then:
 - Try to figure by ourself what can work, and start coding→traditional way
 - Find an expert of the new technique, have regular coffee/beer, get confirmation that the new technique might work, and get implementation tips-better
- ...repeat with each technique...
- Much much better:
 - Release a data set, with a benchmark, and have the expert do the coding him/herself
 - → he has the software and the know-how so he'll be (much) faster even if he does not know anything about our domain at the beginning
 - →engage multiple techniques and experts simultaneously (e.g. 2000 people participated to the Higgs Machine Learning challenge) in a comparable way
 - o → even better if people can collaborate
 - →a challenge is a dataset with a benchmark and a buzz
 - Looking for long lasting collaborations beyond the challenge
- Focus on the pattern recognition: release list of 3D points, challenge is to associate them into tracks fast. Use public release of ATLAS tracking (ACTS) as a simulation engine and starting kit
- □ Phase 1 (just accuracy) to be launched in March 2018 on Kaggle platform
- □ Phase 2 (accuracy and CPU) will run summer 2018, maybe on Kaggle also

A recent attempt: NOVA

(c) NC interaction.

CaloGAN

- One of many physics variable examined
- Pion more difficult
- → very promising, but still a long way to go

Classification without labels

Metodiev et al, <u>1708.02949</u>

- Suppose one wants to separate S and B
- But one only has one signal rich sample Ms and one background rich sample Mb
- □ A classifier optimally trained with Ms and Mb (without information on fraction of S and B) is actually also optimal to separate S and B!
- → ...allows training on data where it is hard to have very pure control sample
- ...one still need to evaluate classification performance
- □ Big caveat : works only if S and B pdf are indentical in Ms and Mb

Advances in ML in HEP David Rouss