A new symmetry of shapes, shells and clusters

J. Cseh

MTA ATOMKI, Debrecen, Hungary cseh@atomki.mta.hu

SSNET18 Gif sur Yvette, November 5-9, 2018

Introduction and summary 1

60 years ago, i.e. 1958: Elliott: spherical shell model > q deform. rotat. Wildermuth et al: sph. shell m. > cluster model Common intersection: SU(3) dynam. symmetry.

Single major shell.

Introduction and summary 2

Many major shells (symmetry-adapted approaches from the spherical shell model viewpoint):

Shell model: symplectic (Sp(3,R)) model. Coll. model: contracted symplectic model Cluster mod: semimicroscopic algebraic cl. m.

Common intersection: dynamical symmetry $U_s(3) \times U_x(3) > U(3) > SU(3) > SO(3)$ (J. Cs. Phys. Conf. Ser. 580, 012046 (2015)).

Introduction and summary 3

The dynamical symmetry of the intersection is identical with the multichannel dynamical symmetry (MUSY) of the cluster configurations. (Shell or quartet state: 1-cluster configuration.)

Detailed spectra of different configurations in different energy windows. Considerable predictive power.

- I. Historical background: SUST(4), SU(3)
- II. Quartets
- **III.** Clusters
- IV. Quadrupole deformation
- V. Unifying symmetry
- VI. Conclusion

Semimicroscopic algebraic approach

Microscopic model space (Pauli-principle included), phenomenological operators.

Fully algebraic description: group-symmetry: not only the basis states but the operators as well.

$SU^{ST}(4)$

Supermultiplet-theory E.P. Wigner, Phys. Rev. 51, 106 (1937).

Eisenbud, Garvey, Wigner: Nuclear Structure(1958) The disadvantage of the supermultiplet theory...

I. SU(3)

J.P. Elliott, Proc. Roy. Soc. A245,128;562 (1958).
 SU(3) shell model.
 In fact UST(4)xSU(3) shell model.
 Harmonic oscillator + QQ interaction.

Description of the spectra of light nuclei. Shell picture of the rotation and deformation; SU(3) symm. and quadr.def. are uniq. related.

Further SU(3) 1958

From shell model to cluster model: Wildermuth-Kanellopoulos *Nucl. Phys. 7, 150 (1958)* Harm. osc. appr. $H_{SM} = H_{CM}$ Bayman-Bohr: SU(3); *Nucl. Phys. 9, 596 (1958/59).*

A quadrupole collective or a cluster band is picked up from the spherical shell model basis by their special SU(3) symmetry.

Cluster-shell duality:

The GS of ¹⁶O, ²⁰Ne etc. is a pure SM configuration and at the same time a pure cluster configuration.

Recent discoveries:

- 1. Other states (SD, HD,...) as well.
- Rediscovery in a different formalism. (Renaissance of the shell-like clustering.)

The SU(3) symmetry breaks down. Much effort from different aspects.

Generalizations

- Many major shells
- No-core
- Mass number
- Large deformation
- Building blocks: pairs, quartets

II. Quartets

Many major shells: no-core approach. Huge shell model space: truncatition.

Importance of quarteting:

- short-range attractive nucl.-nucl. force: occupy the same single-particle orbital.
- Pauli-principle: 2p+2n.

Ground state, binding energy.

70-ies: Quartet excitations

Quartet: 2p+2n in a single-particle orb. > excite A. Arima, V. Gillet, J. Ginocchio, Phys. Rev. Lett. 25 (1970) 1043.

Quartet-symmetry: permut. [4], UST(4) [1,1,1,1] M. Harvey, Nucl. Phys. A202 (1973) 191. 2p+2n may sit in different shells; any number of major shell excitation.

Shell-like models: semi-algebraic: only S and T.

Interacting boson models: Fully algebraic, without shell-model connection.

Fully algebraic description (including spectrum generation) with well-defined shell content?

Algebraic models for shell-like quarteting (J. Cseh, Phys. Lett. B743 (2015) 213.)

Quartet: as defined by Arima et al (no internal structure) Formalism: U(3) as introduced by Elliott, Phenomenologic Algebraic Quartet Model (PAQM).

Quartet: as defined by Harvey (in terms of nucleons) Formalism: $U^{ST}(4) \otimes U(3)$ Semimicroscopic Algebraic Quartet Model (SAQM).

Algebra-chain:

$$U(3) \supset SU(3) \supset SO(3) \supset SO(2)$$
$$|[n_1, n_2, n_3], (\lambda, \mu), K, L, M\rangle$$

- 1. Complete set of basis states
- 2. Dynamical symmetry:

H in terms of invariant operators Eigenvalue-problem: analytical solution

$$\hat{H} = (h\omega)\hat{n} + a\hat{C}_{SU3}^{(2)} + b\hat{C}_{SU3}^{(3)} + d\frac{1}{2\theta}\hat{L}^{2},$$

$$B(E2, I_i \to I_f) = \frac{2I_f + 1}{2I_i + 1} \alpha^2 \left| \left\langle (\lambda, \mu) KI_i, (1, 1) 2 \| (\lambda, \mu) KI_f \right\rangle \right| C^{(2)}(\lambda, \mu)$$

SAQM is an effective model:

- 1) ¹⁶O: positive-parity spectrum: self-consistency argument, no-parameter model.
- 2) SAQM
- 3) Symmetry-adapted no-core shell model (SA-NCSM) T. Dytrych et al:

work is in progress to test how far the effective model is in line with the microscopic content of the ab initio model.

III. Clusters

Quartet state: a special shell model configuration, single-center problem.

Cluster state: a molecule-like configuration, two- (or more) center problem.

Interrelation: symmetry. Overlap: small, large, finite, sometimes 100%.

J. Cseh, Phys. Lett. B281 (1992) 173;

J. Cseh, G. Lévai, Ann. Phys. (NY) (1994) 165. Microscopic model space (like in fully micr. models), algebraic methods (like in the model by R. Bijker).

Internal structure of clusters:

Elliott-model with $U_{C_i}^{ST}(4) \otimes U_{c_i}(3)$ algebraic structure.

J.P. Elliott, Proc. Roy. Soc. 245 (1958) 128; 562.

Relative motion:

(truncated) vibron model with $U_R(4)$ algebraic structure

F. lachello, Phys. Rev. C23 (1981) 2778.

Binary clusterization:

 $U_{C_1}^{ST}(4) \otimes U_{c_1}(3) \otimes U_{C_2}^{ST}(4) \otimes U_{c_2}(3) \otimes U_R(4).$

Operators: group generators, matrix elements, algebraic.

Model space: only Pauli-allowed states, as in the Microscopic Cluster Model with U(3) basis. (H. Horiuchi, T. Hecht, Y. Suzuki, K. Kato,...)

IV. Quadrupole deformation

Spherical, superdeformed, hyperdeformed,... shapes with ratios of major axes

1:1:1 , 2:1:1 , 3:1:1, ...

turn out to be exceptianally stable.

One way of seeing it is to investigate the energysurface as a function of the quadrupole deformation.

An alternative way:

stability and self-consistency of the (quasidynamical) SU(3) symmetry (qudrupole deformation).

Scenario:

quadrupole deformation > Nilsson-calculation > quasi-dynamical SU(3) > quadrupole deformation

Self-consistency + stability.

Energy-minima and stabil deformation (symmetry) are in good agreement. (Nice to see that different methods give the same results.)

Symmetry: selection rule, connection to clusterconfiguration, connection to reaction channels.

Horizontal platos:

- A) Appearance of shape isomers.
- B) Validity of SU(3) symmetry.

Work in progress:

How much the distribution of the wavefunction of the SA-NCSM with realistic interaction (ab initio method) is in line withe the results of the symmetry-based semimicroscopic approach.

GS, SD, alpha-chain states.

L-S coupling, Wigner's UST(4) space part:

$U_s(3) \otimes U_x(3) \supset U(3) \supset O(3)$

V. Multichannel dynamical symmetry (MUSY)-1

Connection between the shell, collective and cluster models for multi major-shell problems:

(No-core) Symplectic shell model (G. Rosensteel, D. Rowe, PRL 38 (1977) 10; T. Dytrych et al. J. Phys. G 35 (2008) 123101.)

Contracted symplectic model (D.J. Rowe, G. Rosensteel, Phys. Rev. C 25 (1982) 3236(R); O. Castanos, J. P. Draayer, Nucl. Phys. A 491 (1989) 349.)

Semimicroscopic algebraic cluster model (J. Cseh, G. Lévai, Ann. Phys. 230 (1994) 165.)

Multichannel dynamical symmetry-2

It connects different cluster configurations. A composite symmetry of a composite system. (J. Cseh, Phys. Rev. C 50 (1994) 2240.)

Formulated within the semimicroscopic algebraic cluster model (SACM). (J. Cseh, Phys. Lett. B 281 (1992) 173.)

The (no-core) shell (or quartet) configuration is a special 1-cluster configuration: MUSY. (J. Cseh, Phys. Lett. B743 (2015) 213.)

Practical aspect of MUSY

Unified description of different configurations. J. Cseh, G. Riczu, Phys. Lett. B 757 (2016) 312.

Experimental spectra, predictions.

(J. Cseh, G. Riczu, Phys. Lett. B 757 (2016) 312.)

100% overlap of shell (quartet) and cluster states:

```
0(0,12) 0<sup>+</sup>, GS
0(12,0) 0<sup>+</sup>,
1(14,1) 0<sup>-</sup>,
2(16,0) 2<sup>+</sup>,
4(20,4) 0<sup>+</sup>, SD.
```

 $\hat{H} = (h\omega)\hat{n} + a\hat{C}_{SU3}^{(2)} + b\hat{C}_{SU3}^{(3)} + d\frac{1}{2\theta}\hat{L}^2$

P. Adsley et al, Phys. Rev. C 95, 024319 (2017)

VI. Conclusions

Semimicroscopic Algebraic

Quartet Model (SAQM)

Cluster Model (SACM)

Method for shape isomers

Unifying symmetry

VI. Conclusions

The multichannel dynamical symmetry (MUSY) connects the shell (quartet), collective and

cluster models of multi major-shell excitations.

Describes the detailed spectra of different configuartions in different energy window in a unified way.

It gives several shape isomers.

It has a considerable predictive power.

Dear Organizers, Many thanks for the beautiful conference!

Thank you for your attention!