∂TRIUMF

Nuclear structure and dynamics from *ab initio* theory

Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET'18 Conference) Gif-sur-Yvette, November 5th – 9th, 2018

Petr Navratil

TRIUMF

Collaborators: S. Quaglioni (LLNL), G. Hupin (Orsay), M. Vorabbi, A. Calci (TRIUMF), P. Gysbers (UBC/TRIUMF), M. Gennari (U Waterloo), J. Dohet-Eraly (ULB), F. Raimondi (Saclay), W. Horiuchi (U Hokkaido)

Outline

- Ab initio calculations in nuclear physics
- New chiral NN N⁴LO + 3N
 - Beta decays of light nuclei in NCSM
 - Microscopic optical potentials from NCSM densities
 - Kinetic density from NCSM
- No-Core Shell Model with Continuum (NCSMC)
 - N-⁴He scattering and polarized D+T fusion
 - Structure of ⁷Be and ⁷Li considering binary breakup thresholds

First principles or ab initio nuclear theory

First principles or *ab initio* nuclear theory – what we do at present

Ab initio

•

- ♦ Degrees of freedom: Nucleons
- ♦ All nucleons are active
- ♦ Exact Pauli principle
- ♦ Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data

4

♦ Controllable approximations

Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

(A)
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

(A)
$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

Review *Ab initio* no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

³H and ⁴He with chiral EFT interactions up to N⁴LO

$^{3}H \rightarrow ^{3}He \beta decay$

$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

Potential: "N⁴LO NN"

- chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff
- LEC $c_D = -1.8$ determined

Original EM 2003 N³LO NN c_D=+0.8

(3N repulsive)

7

Applications to β decays in p-shell nuclei and beyond

- Does inclusion of the MEC explain g_A quenching?
- In light nuclei correlations present in *ab initio* (NCSM) wave functions explain almost all of the quenching compared to the standard shell model
 - MEC inclusion overall improves agreement with experiment
- The effect of the MEC inclusion is greater in heavier nuclei
- SRG evolved matrix elements used in coupled-cluster and IM-SRG calculations (up to ¹⁰⁰Sn)

P. Gysbers et al., "Quenching puzzle of beta decays," submitted.

Hollow symbols – GT Filled symbols – GT+MEC Both Hamiltonian and operators SRG evolved Hamiltonian and current consistent parameters

Microscopic optical potentials derived from *ab initio* translationally invariant nonlocal one-body densities

Microscopic optical potentials from NCSM densities

Michael Gennari[®] University of Waterloo, 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Matteo Vorabbi,[†] Angelo Calci, and Petr Navrátil[‡] TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

- Translationally-invariant non-local densities from NCSM calculations with chiral NN N⁴LO + 3N N²LO interactions
- High-energy proton-nucleus scattering with microscopic optical potentials from chiral N⁴LO NN interaction and NCSM densities

Nuclear kinetic density from NCSM wave functions

- DFT calculations include kinetic density
 - Might contain center-of-mass contamination
- Can be calculated for light nuclei in NCSM
 - Translationally invariant

$$\tau_{\mathcal{N}}(\vec{r}) = \left[\vec{\nabla} \cdot \vec{\nabla}' \rho_{\mathcal{N}}(\vec{r}, \vec{r}')\right]_{\vec{r}=\vec{r}'}$$

$$\tau_{DFT}(\vec{r}) = \left(1 - \frac{1}{A}\right) \tau_{wiCOM}(\vec{r})$$

Nucleus	$N_{\rm max}$	$\langle T_{int} \rangle$	$\langle T_{wiCOM} \rangle$	$\langle T_{DFT} \rangle$
⁴ He	14	51.91	66.91	50.18
⁶ He	12	78.26	93.26	77.72
⁸ He	10	116.30	131.30	114.89
¹² C	8 IT	219.84	234.84	215.27
¹⁶ O	8 IT	301.69	316.69	296.90

Extending no-core shell model beyond bound states

Include more many nucleon correlations... $N_{\underline{\mathrm{max}}}$ $\Psi^A =$ $c_{Ni} \Phi^A_{Ni}$ NCSM N=0 i +(A-a)(a) $I_{A-a,a}$ + $\left(a_{2\mu}\right)$ $\vec{r}_{\mu 1}$ $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

 $r_{\mu 2}$

 $(a_{1\mu})$

+

. . .

 $\left(a_{3\mu}\right)$

...using the Resonating Group Method (RGM) ideas

Unified approach to bound & continuum states; to nuclear structure & reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonicoscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion, clusters described by NCSM
 - proper asymptotic behavior
 - Iong-range correlations
- Most efficient: ab initio no-core shell model with continuum (NCSMC)

NCSM/RGM

Coupled NCSMC equations

Solved by Microscopic R-matrix theory on a Lagrange mesh – efficient for coupled channels

n-⁴He scattering within NCSMC

Deuterium-Tritium fusion

- The $d^{+3}H \rightarrow n^{+4}He$ reaction
 - The most promising for the production of fusion energy in the near future
 - Used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, important for Big Bang nucleosynthesis

n-⁴He scattering and ³H+d fusion within NCSMC

FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

The d-³H fusion takes place through a transition of d+³H is *S*-wave to n+⁴He in *D*-wave: Importance of the **tensor and 3N force**

 $S(E) = E\sigma(E) \exp[2\pi\eta(E)]$ $\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$

Ab initio predictions for polarized DT thermonuclear fusion

19

Nature Communications (accepted); arXiv:1803.11378 Guillaume Hupin^{1,2,3}, Sofia Quaglioni³ and Petr Navrátil⁴

³H(d,n)⁴He with chiral NN+3N500 interaction

 2.10^{1}

 5.10^{0}

 2.10^{0}

 5.10^{-1}

 10^{-}

 5.10^{-1}

 10^{-}

 5.10°

 10^{-3}

 5.10^{-4}

 10^{-1}

 $\frac{\partial \sigma}{\partial \theta} \left[\mathrm{b.sr}^{-1} \right]$

 5.10^{0}

AR52, CO52, AR54 KO66, JA84, BR87

NCSMC - pheno

 2.10^{1}

 5.10^{-2} 10^{-1}

 5.10^{1}

NCSMC

 $E_{\rm c.m.}$ [MeV]

 5.10^{-1}

 $E_{\rm c.m.}$ [keV]

 10^{2}

NCSMC ⁺⁺10¹

S-factor [b.MeV]

Ab initio predictions for polarized DT thermonuclear fusion

20

Nature Communications (accepted); arXiv:1803.11378 Guillaume Hupin^{1,2,3}, Sofia Quaglioni³ and Petr Navrátil⁴

³H(d,n)⁴He with chiral NN+3N500 interaction

 2.10^{1}

 5.10^{0}

 2.10^{0}

 5.10^{-1}

 10^{-}

 5.10^{-1}

 10^{-}

 5.10°

 10^{-3}

 5.10^{-4}

 10^{-}

 $\frac{\partial \sigma}{\partial \theta} \left[\mathrm{b.sr}^{-1} \right]$

 5.10^{0}

AR52, CO52, AR54 KO66, JA84, BR87

NCSMC - pheno

 2.10^{1}

 5.10^{-2} 10^{-1}

NCSMC ⁺⁺10¹

S-factor [b.MeV]

Structure of ⁷Be and ⁷Li considering binary breakup thresholds

NCSMC with SRG evolved chiral NN

⁷Li system

⁷Li – Reproducing the energy spectrum

⁷Li – Reproducing the energy spectrum

⁷Li – New negative-parity states

⁷Li – New negative-parity states

⁷Li – New negative-parity states

S-factor for ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$ reactions

 3 He(α , γ)⁷Be and 3 H(α , γ)⁷Li astrophysical *S* factors from the no-core shell model with continuum

Jérémy Dohet-Eraly $^{a,*},$ Petr Navrátil a, Sofia Quaglioni b, Wataru Horiuchi c, Guillaume Hupin $^{b,d,1},$ Francesco Raimondi a,2 Cross section and S-factor $\sigma(E) = S(E)E^{-1}\exp[-2\pi\eta(E)]$

Sommerfeld parameter

$$\eta(E) = \frac{Z_1 Z_2 e^2}{\hbar v}$$

Conclusions

- Ab initio calculations of nuclear structure and reactions with predictive power becoming feasible beyond the lightest nuclei
- Ab initio structure calculations can even reach (selected) medium
 & medium-heavy mass nuclei
- These calculations make connections between the low-energy QCD, many-body systems, and nuclear astrophysics

∂TRIUMF

Thank you! Merci!

