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2Outline

§ Ab initio calculations in nuclear physics

§ New chiral NN N4LO + 3N

§ Beta decays of light nuclei in NCSM

§ Microscopic optical potentials from NCSM densities

§ Kinetic density from NCSM

§ No-Core Shell Model with Continuum (NCSMC)
§ N-4He scattering and polarized D+T fusion

§ Structure of 7Be and 7Li considering binary breakup thresholds



3First principles or ab initio nuclear theory

Genuine Ab Initio

Quantum Chromodynamics
(QCD)
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Chiral Effective 
Field Theory

(parameters fitted 
to NN data)

First principles or ab initio nuclear theory – what we do at present

Quantum Chromodynamics
(QCD)

Current ab anitio
nuclear theory

HΨ(A) = EΨ(A)

• Ab initio
² Degrees of freedom: Nucleons  
² All nucleons are active
² Exact Pauli principle
² Realistic inter-nucleon interactions

² Accurate description of NN (and 3N) data

² Controllable approximations



5Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative-coordinate and Slater 
determinant basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances

1max += NN
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a b s t r a c t

Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.
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73Hè3He β decay

Determination of the cD parameter
relevant to chiral 3N force cD=-1.8         

(3N attractive)
Original EM 2003 N3LO NN cD=+0.8

(3N repulsive)

Results: �-decay 3H!3He

Ô = GT (1) +MEC (2) ! Ô↵ = GT (1) + GT (2)
↵ +MEC (2)

↵ + . . .

Operator:

Gamow-Teller (1-body) + chiral
meson exchange current (2-body)
Park (2003)

Potential: “N4LO NN”

chiral NN @ N4LO, Machleidt
PRC96 (2017), 500MeV cuto↵

LEC cD = �1.8 determined
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Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 8 / 11



8Applications to β decays in p-shell nuclei and beyond 

§ Does inclusion of the MEC explain gA quenching?
§ In light nuclei correlations present in ab initio (NCSM) 

wave functions explain almost all of the quenching 
compared to the standard shell model
§ MEC inclusion overall improves agreement with 

experiment
§ The effect of the MEC inclusion is greater in heavier 

nuclei
§ SRG evolved matrix elements used in coupled-cluster 

and IM-SRG calculations (up to 100Sn) 

Application to Heavier Nuclei

Does inclusion of the MEC explain gA quenching?
The e↵ect of the inclusion is greater in heavier nuclei
SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn100)

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 9 / 11

MEC 3N (NCSM)

Hollow symbols – GT
Filled symbols – GT+MEC
Both Hamiltonian and operators SRG evolved
Hamiltonian and current consistent parameters
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9Microscopic optical potentials from NCSM densities

§ Translationally-invariant non-local densities from NCSM calculations with chiral NN N4LO + 3N N2LO interactions

§ High-energy proton-nucleus scattering with microscopic optical potentials from chiral N4LO NN interaction and NCSM densities

PHYSICAL REVIEW C 97, 034619 (2018)

Microscopic optical potentials derived from ab initio translationally invariant
nonlocal one-body densities

Michael Gennari*

University of Waterloo, 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada
and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Matteo Vorabbi,† Angelo Calci, and Petr Navrátil‡
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(Received 6 December 2017; published 26 March 2018)

Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering
and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the
target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important
role in the description of the scattering process.
Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio
translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM)
approach utilizing two- and three-nucleon chiral interactions as the only input.
Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic
multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from
the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by
exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates.
Results: The ground-state local and nonlocal densities of 4,6,8He, 12C, and 16O are calculated and applied to optical
potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering
off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality
and the COM removal is discussed.
Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves
agreement with experiment in comparison to results generated with the local densities especially for light nuclei.
For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the
data although a more sophisticated model for the optical potential is required to properly describe the analyzing
powers.

DOI: 10.1103/PhysRevC.97.034619

I. INTRODUCTION

The nuclear optical potential [1] is a successful tool for
the investigation of nucleon-nucleus (NA) elastic scattering,
allowing us to compute the differential cross section and the
spin polarizations in several regions of the nuclear chart and
for a wide range of energies. Its use has also been extended to
inelastic scattering calculations and to generate the distorted
waves that are used to compute the differential cross section in
other nuclear reactions.

Optical potentials can be obtained phenomenologically or
microscopically and they are both characterized by a real part
describing the nuclear attraction, and an imaginary part, which
takes into account the loss of the reaction flux from the elastic
channel into the other channels.

*mgennari5216@gmail.com
†mvorabbi@triumf.ca
‡navratil@triumf.ca

Phenomenological potentials assume a certain shape of
the nuclear density distribution, which depends on several
adjustable parameters that are functions of the energy and the
nuclear mass number [2– 4]. These potentials are properly set
up in order to optimize the fit to the experimental data of the NA
elastic scattering. Of course, due to the fit, these potentials work
very well in situations where experimental data are available,
but they lack predictive power.

On the contrary, microscopic optical potentials do not
depend on any adjustable parameters making them more
appealing for the investigation of new unstable nuclei where
experimental data are not yet available. The computation of
such potentials requires, in principle, the solution of the full
nuclear many-body problem that has to be solved using two-
and three-nucleon forces as the only input. Unfortunately, such
a goal is beyond our actual capabilities and thus some approx-
imations are needed in order to derive a suitable expression of
the optical potential. Several different approaches are currently
under development and a complete list can be found in Ref. [5].

In this paper we adopt the approach based on the nucleon-
nucleon (NN) t matrix, that was first theoretically justified

2469-9985/2018/97(3)/034619(16) 034619-1 ©2018 American Physical Society
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Finally, let us note that the proton and neutron densities are
obtained simply by introducing ( 1

2 ± tzi) factors, respectively,
in Eq. (13), which then results in the creation and annihilation
operators aquiring a proton or neutron index as the COM
operators commute with isospin operators. The normalization
(19) then changes to Z and N for the proton and neutron density
respectively.

D. Nonlocal density in momentum space

In Sec. II C we presented the general expressions for the
nonlocal densities in coordinate space, but the evaluation of
Eq. (9) for the optical potential requires the knowledge of the
ground-state density in momentum space. In the following we
show how this was done. For the ground state of even-even
nuclei, considered in this work, the angular momenta Ji and Jf

in Eq. (14) and Eq. (16) are equal to zero: this gives k = K = 0
and consequently l′ = l. Thus, Eq. (14) and Eq. (16) can be
expressed in a general form as

ρ(r⃗ ,r⃗ ′) =
∑

l

ρl(r,r ′)(Y ∗
l (r̂) Y ∗

l (r̂ ′))(0)
0 , (20)

where ρl(r,r ′) is obtained summing the radial part over all
the other quantum numbers. The angular part can be easily
evaluated as

(Y ∗
l (r̂) Y ∗

l (r̂ ′))(0)
0 = (− 1)l

√
2l + 1
4π

Pl(cos ω), (21)

where Pl are the Legendre polynomials and ω is the angle
between r⃗ and r⃗ ′. In momentum space, the expression of the
density is given by

ρ(p⃗,p⃗ ′) = 1
2π2

∑

l

ρl(p,p′)(− 1)l
√

2l + 1Pl(cos γ ), (22)

where γ is the angle between p⃗ and p⃗ ′. The radial part ρl(p,p′)
is finally obtained as

ρl(p,p′) =
∫ ∞

0
drr2

∫ ∞

0
dr ′r ′ 2jl(pr)ρl(r,r ′)jl(p′r ′), (23)

where jl are the spherical Bessel functions.

III. NONLOCAL DENSITY RESULTS

In this section we show the results for the nonlocal den-
sities obtained from the NCSM wave functions and using
the approach described in Sec. II C. The SRG-evolved NN-
N4LO(500)+3Nlnl interaction was used in all results dis-
cussed in the section. As a test of the importance of COM
removal, we computed for 4,6,8He, 12C, and 16O the trans-
lational invariant and COM contaminated nuclear densities
given by Eq. (16) and Eq. (14), respectively. Figure plots of
the COM contaminated density are labeled “wiCOM” while
the translationally invariant density plots are labeled “trinv”.
The ground-state densities of the nuclei are shown with all
angular dependence factorized out for plotting.

To appreciate the significance of spurious COM removal in
light nuclei, consider the comparison between the wiCOM and
trinv nonlocal density of 4He shown in Fig. 1. An Nmax = 14
basis space is used with a flow parameter λSRG = 2.0 fm− 1.

FIG. 1. Ground-state 4He nonlocal neutron density calculated
with an Nmax = 14 basis space, an oscillator frequency of h̄& =
20 MeV, and a flow parameter of λSRG = 2.0 fm− 1.

The tremendous difference between the trinv density and the
wiCOM density is easily recognizable at small r and r ′. We
notice that the trinv density has sharper features at peaks and
tends to decay more rapidly than the wiCOM density. The
COM contamination appears to suppress the nuclear density
at small r and r ′ values.

In Fig. 2 we present the proton and neutron nonlocal
densities for 6He using a Nmax = 12 basis space with a
flow parameter λSRG = 2.0 fm− 1. As in the case of 4He, the
translationally invariant density behaves significantly different
from the spurious COM contaminated density. We still see that
the COM tends to smooth the density over larger r and r ′ values,
suppressing it for small r and r ′. However, we see a minor
reduction in peak amplitude and sharpness when compared
to the differences observed in 4He. Notably, the COM term
diminishes with A so we expect a reduction in the importance
of its removal as we go to higher A-nucleon systems. This
trend is further noticeable in Fig. 3, which shows results for
the nonlocal density of 8He using the same λSRG parameter and
a Nmax = 10 basis space.

FIG. 2. Ground-state 6He proton and neutron nonlocal densities
calculated with a Nmax = 12 basis space, an oscillator frequency of
h̄& = 20 MeV, and a flow parameter of λSRG = 2.0 fm− 1. Proton
densities are shown in blue and neutron densities are shown in red.
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Finally, let us note that the proton and neutron densities are
obtained simply by introducing ( 1

2 ± tzi) factors, respectively,
in Eq. (13), which then results in the creation and annihilation
operators aquiring a proton or neutron index as the COM
operators commute with isospin operators. The normalization
(19) then changes to Z and N for the proton and neutron density
respectively.

D. Nonlocal density in momentum space

In Sec. II C we presented the general expressions for the
nonlocal densities in coordinate space, but the evaluation of
Eq. (9) for the optical potential requires the knowledge of the
ground-state density in momentum space. In the following we
show how this was done. For the ground state of even-even
nuclei, considered in this work, the angular momenta Ji and Jf

in Eq. (14) and Eq. (16) are equal to zero: this gives k = K = 0
and consequently l′ = l. Thus, Eq. (14) and Eq. (16) can be
expressed in a general form as

ρ(r⃗ ,r⃗ ′) =
∑

l

ρl(r,r ′)(Y ∗
l (r̂) Y ∗

l (r̂ ′))(0)
0 , (20)

where ρl(r,r ′) is obtained summing the radial part over all
the other quantum numbers. The angular part can be easily
evaluated as

(Y ∗
l (r̂) Y ∗

l (r̂ ′))(0)
0 = (− 1)l

√
2l + 1
4π

Pl(cos ω), (21)

where Pl are the Legendre polynomials and ω is the angle
between r⃗ and r⃗ ′. In momentum space, the expression of the
density is given by

ρ(p⃗,p⃗ ′) = 1
2π2

∑

l

ρl(p,p′)(− 1)l
√

2l + 1Pl(cos γ ), (22)

where γ is the angle between p⃗ and p⃗ ′. The radial part ρl(p,p′)
is finally obtained as

ρl(p,p′) =
∫ ∞

0
drr2

∫ ∞

0
dr ′r ′ 2jl(pr)ρl(r,r ′)jl(p′r ′), (23)

where jl are the spherical Bessel functions.

III. NONLOCAL DENSITY RESULTS

In this section we show the results for the nonlocal den-
sities obtained from the NCSM wave functions and using
the approach described in Sec. II C. The SRG-evolved NN-
N4LO(500)+3Nlnl interaction was used in all results dis-
cussed in the section. As a test of the importance of COM
removal, we computed for 4,6,8He, 12C, and 16O the trans-
lational invariant and COM contaminated nuclear densities
given by Eq. (16) and Eq. (14), respectively. Figure plots of
the COM contaminated density are labeled “wiCOM” while
the translationally invariant density plots are labeled “trinv”.
The ground-state densities of the nuclei are shown with all
angular dependence factorized out for plotting.

To appreciate the significance of spurious COM removal in
light nuclei, consider the comparison between the wiCOM and
trinv nonlocal density of 4He shown in Fig. 1. An Nmax = 14
basis space is used with a flow parameter λSRG = 2.0 fm− 1.

FIG. 1. Ground-state 4He nonlocal neutron density calculated
with an Nmax = 14 basis space, an oscillator frequency of h̄& =
20 MeV, and a flow parameter of λSRG = 2.0 fm− 1.

The tremendous difference between the trinv density and the
wiCOM density is easily recognizable at small r and r ′. We
notice that the trinv density has sharper features at peaks and
tends to decay more rapidly than the wiCOM density. The
COM contamination appears to suppress the nuclear density
at small r and r ′ values.

In Fig. 2 we present the proton and neutron nonlocal
densities for 6He using a Nmax = 12 basis space with a
flow parameter λSRG = 2.0 fm− 1. As in the case of 4He, the
translationally invariant density behaves significantly different
from the spurious COM contaminated density. We still see that
the COM tends to smooth the density over larger r and r ′ values,
suppressing it for small r and r ′. However, we see a minor
reduction in peak amplitude and sharpness when compared
to the differences observed in 4He. Notably, the COM term
diminishes with A so we expect a reduction in the importance
of its removal as we go to higher A-nucleon systems. This
trend is further noticeable in Fig. 3, which shows results for
the nonlocal density of 8He using the same λSRG parameter and
a Nmax = 10 basis space.

FIG. 2. Ground-state 6He proton and neutron nonlocal densities
calculated with a Nmax = 12 basis space, an oscillator frequency of
h̄& = 20 MeV, and a flow parameter of λSRG = 2.0 fm− 1. Proton
densities are shown in blue and neutron densities are shown in red.
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Scattering observables – Stable nuclei
Gennari, Vorabbi, Calci, Navratil, PRC 97, 034619 (2018)
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10Nuclear kinetic density from NCSM wave functions

§ DFT calculations include kinetic density
§ Might contain center-of-mass contamination

§ Can be calculated for light nuclei in NCSM
§ Translationally invariant

3

with ~⇠0 proportional to the A-nucleon COM coordinate.
The matrix element of the translationally invariant op-
erator as given in Ref. [2], ⇢trinv

op
(~r� ~R,~r

0 � ~R), between
general initial and final states is then given by (compare
to Eq. (3))

hA�jJjMj |⇢trinvop
(~r � ~R,~r

0 � ~R)|A�iJiMii
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⇣
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In Eq. (5), the Rn,l
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A

A�1 |~r� ~R|
⌘
is the radial harmonic

oscillator wave function in terms of a relative Jacobi coor-
dinate, ~⇠ = �

q
A

A�1 (~r� ~R). The
�
M

K
�
nln0l0,n1l1n2l2

ma-

trix (6) introduced in Ref. [25] includes generalized har-
monic oscillator brackets of the form hnl00l|N1L1n1l1lid
corresponding to a two particle system with a mass ratio
of d, as outlined in Ref. [28].

The nonlocal density expressions presented here can
be related to the local densities in Ref. [25] by restricting
the coordinates such that ~r = ~r

0, or

⇢(~r) = ⇢(~r,~r 0)|~r=~r 0 = ⇢(~r,~r) . (7)

The normalization of the nonlocal density is consistent
with Ref. [25] such that the integral of the local form

Z
d~r hA�JM |⇢op(~r,~r)|A�JMi = A (8)

returns the number of nucleons for both (3) and (5).
Finally, make note that the proton and neutron densi-

ties are obtained separately by introducing ( 12 ± tzi) fac-
tors, respectively, in Eq. (2). This results in the inclusion
of a proton or neutron index in the creation and anihi-
lation operators, as the COM operators commute with
isospin operators. The normalization (8) then becomes
Z or N for the proton and neutron density respectively.

C. Kinetic density

In DFT, the kinetic density is just one of several sys-
tem densities which contribute to the local energy den-
sity H(~r). The kinetic density is not itself an observable,
however when combined with the potential interaction
terms, the resultant local energy density H is an observ-
able from which nuclear properties can be computed [29].
The kinetic term in H(~r) is given by

Hkinetic(~r) =
~2
2m

⌧0(~r) , (9)

where m is the nucleon mass and ⌧0 = ⌧p+⌧n is the total
kinetic density [30].
With the nonlocal nuclear densities constructed, it is

now possible to compute the kinetic density of a given
nuclear system from ab initio theory. We act upon the
nonlocal density by a Laplacian-like operator according
to the following relation described in Ref. [31],

⌧N(~r) =


~r · ~r 0

⇢N(~r,~r 0)

�

~r=~r 0
, (10)

where N denotes the nucleon type for protons (p) and
neutrons (n). In order to derive a computable expres-
sion for this quantity, we require several relations. It is
useful to begin by writing the kinetic density in spherical
component form as

rur0
�u

⇢(~r,~r 0) =
X

n,l,n0,l0,K,k,ml,ml0

↵
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⇤
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�u
Rn0,l0(r

0)Y ⇤
l0,ml0

(r̂0)

�
,

(11)

where u = 0,±1 and ↵
K,i,f

n,l,n0,l0 is defined for the transla-
tionally invariant density as

↵
K,i,f

n,l,n0,l0 =
X

n1,l1,j1,n2,l2,j2

✓
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A� 1

◆3/2

⇥ 1

Ĵf

(Ji Mi K k|Jf Mf )
�
M

K
��1
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⇥ (�1)l1+l2+K+j2� 1
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⇢
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l2 l1
1
2

�

⇥ SDhA�fJf || (a†n1,l1,j1
ãn2,l2,j2)

(K) ||A�iJiiSD .

(12)

We note that ↵K,i,f

n,l,n0,l0 is di↵erent for the COM contami-
nated density. We now discuss several relations necessary
for the derivation of the kinetic density, explicitly shown
in the appendix. The first set of relations are analytic
expressions for the spherical components of ~rf(~r)Y m

l
(r̂),

which can be found in section 5.8.3 of Ref. [32]. In these
relations, we see explicit dependence on the derivative
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Figure 6. Ground state 12C nonlocal proton and neutron den-
sities computed using the NN-N4LO(500)+3Nlnl interaction
with an Nmax = 8 importance truncated basis space, an os-
cillator frequency of ~⌦ = 20.0 MeV, and a flow parameter of
�SRG = 1.8 fm-1.

the density will still be impacted by these di↵erences, as
shown in Ref. [2]. One would then expect that an object
such as the kinetic density, a term dependent upon a gra-
dient on each coordinate, Eq. (10), would experience an
amplification of these structure di↵erences.

Figure 7. Ground state 16O nonlocal proton and neutron den-
sities computed using the NN-N4LO(500)+3Nlnl interaction
with an Nmax = 8 importance truncated basis space, an os-
cillator frequency of ~⌦ = 20.0 MeV, and a flow parameter of
�SRG = 1.8 fm-1.

We now present the local proton and neutron densities,
⇢N(r) = ⇢N(r, r), for 4,6,8He, 12C, and 16O for further

Figure 8. Ground state 4He local proton and neutron densities
computed using the NN-N4LO(500)+3Nlnl interaction with
an Nmax = 14 basis space, an oscillator frequency of ~⌦ =
20.0 MeV, and a flow parameter of �SRG = 2.0 fm-1.

Figure 9. Ground state 6He local proton and neutron densities
computed using the NN-N4LO(500)+3Nlnl interaction with
an Nmax = 12 basis space, an oscillator frequency of ~⌦ =
20.0 MeV, and a flow parameter of �SRG = 2.0 fm-1.

analysis. Referring to Fig. 8, Fig. 9, and Fig. 10 for the
local densities of light nuclei, there are notably drastic
e↵ects resulting from the COM removal procedure. If ac-
curate nuclear structure calculations are to be performed
for lighter systems, one must properly treat the COM
contamination in these systems. Additionally, in study-
ing the local densities of the larger aforementioned nuclei,
one can see structural di↵erences in the larger A-nucleon
systems which were not so easily observed in the nonlocal
density figures. From the local densities we observe that
these structure di↵erences are apparent and still relevant
in the larger systems, even though the COM contribu-
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Figure 10. Ground state 8He local proton and neutron den-
sities computed using the NN-N4LO(500)+3Nlnl interaction
with an Nmax = 10 basis space, an oscillator frequency of
~⌦ = 20.0 MeV, and a flow parameter of �SRG = 2.0 fm-1.

Figure 11. Ground state 12C local proton and neutron den-
sities computed using the NN-N4LO(500)+3Nlnl interaction
with an Nmax = 10 basis space, an oscillator frequency of
~⌦ = 20.0 MeV, and a flow parameter of �SRG = 2.0 fm-1.

tion diminishes with increasing A-nucleon number. As a
result, we expect that the COM removal process will pro-
duce noticeable changes in the kinetic densities for both
12C and 16O.

B. Kinetic density

In the following section we present the main result
of this work; kinetic densities computed from ab initio

NCSM nonlocal densities using the method outlined in
Sec. II C. For completeness, we present results ranging

Figure 12. Ground state 16O local proton and neutron den-
sities computed using the NN-N4LO(500)+3Nlnl interaction
with an Nmax = 10 basis space, an oscillator frequency of
~⌦ = 20.0 MeV, and a flow parameter of �SRG = 2.0 fm-1.

Figure 13. Ground state trinv kinetic density comparison
for 4He. In the top panel are calculations with two-body
(NN+3Nind SRG) and two- plus three-body (NN+3N SRG)
SRG-evolved interactions, while in the bottom panel we have
the bare two-body NN-N4LO(500) interaction. Nonlocal den-
sities were computed as previously described in Fig. 1 and
Fig. 2, respectively.

from 4He to 16O, though we emphasize that any reason-
able comparison with DFT can only be done with the
latter.
As for the densities, we present results for 4He using

SRG-evolved chiral two-body (NN+3Nind SRG) and chi-
ral two- plus three-body (NN+3N SRG) interactions in
the top panel, as well as the bare NN-N4LO(500) interac-
tion kinetic densities in the bottom panel of Fig. 13. As
previously discussed, we see significant di↵erences with
the inclusion of the chiral three-body interaction terms
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the translationally invariant kinetic density, upon inte-
gration over the spatial coordinates, we exactly repro-
duce the expectation value of the ground state intrinsic
kinetic energy of the nucleus, which can be independently
calculated from two-body densities introduced in second
quantization. The expectation value is given by Eq. (15),

hTinti =
1

4

X

abcd

hab|Tint |cdi

⇥ SD hA�JT | a†
a
a
†
b
adac |A�JT i SD .

(15)

When considering the COM contaminated kinetic den-

Figure 17. Ground state 12C comparisons between the trinv

and wiCOM kinetic densities. The nonlocal density was com-
puted as previously described in Sec. III A. The expectation
value of the intrinsic kinetic energy for 12C is 219.84 MeV.

Figure 18. Ground state 16O comparisons between the trinv

and wiCOM kinetic densities. The nonlocal density was com-
puted as previously described in Sec. III A. The expectation
value of the intrinsic kinetic energy for 16O is 301.69 MeV.

sity, one recovers the expectation value of the intrinsic
kinetic energy plus the expectation value of the kinetic
energy of the COM. The results for the hTinti are sum-
marized in Table I. The recovery of the intrinsic kinetic
energy after COM removal is direct confirmation of suc-
cess of the procedure, and can be summarized by the

Figure 19. Ground state Nmax convergence results for 4He
trinv kinetic neutron density. The nonlocal density was com-
puted as previously described in Sec. III A.

Figure 20. Ground state Nmax convergence results for 16O
trinv kinetic neutron density. The nonlocal density was com-
puted as previously described in Sec. III A.

M. Gennari and P. N., arXiv:1808.10537 
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Nucleus Nmax hTinti Error (±)

4He (bare) 18 62.73 ± 0.01 %

4He 14 51.91 ± 0.01 %

6He 12 78.26 ± 1.4 %

8He 10 116.30 ± 3.1 %

12C 8 IT 219.84 ± 1.2 %

16O 8 IT 301.69 ± 0.8 %

Table I. Ground state mean intrinsic kinetic energy values
and percent errors for all aforementioned nuclei calculated us-
ing the NN-N4LO(500)+3Nlnl interaction (except 4He-bare,
which are the results for the bare NN-N4LO(500) interaction).
All hTinti values are in MeV. Note IT refers to an importance
truncated basis space. Error is calculated using the percent
di↵erence between the maximum Nmax value and the previous
value.

following set of relations, Eq. (16) and Eq. (17),

hTwiCOM i = SD hA�JT | ⌧wiCOM

0 |A�JT i SD

=
~2
2m

Z 1

0
r
2
⌧
wiCOM

0 (r) dr

= SD hA�JT | ⌧ int0 + ⌧
COM

0 |A�JT i SD

= hTinti+
3

4
~⌦ ,

(16)

hTinti = hTwiCOM i � 3

4
~⌦

= SD hA�JT | ⌧ trinv0 |A�JT i SD

=
~2
2m

Z 1

0
r
2
⌧
trinv

0 (r) dr ,

(17)

where m is the nucleon mass and ⌧0 is the total ki-
netic density. In Fig. 19 and Fig. 20, we present ground
state Nmax convergence plots for the nuclei 4He and 16O.
We achieve rapid convergence in 4He when applying the
NN-N4LO(500)+3Nlnl interaction with a basis size of
Nmax = 10, as the final three Nmax calculations over-
lap completely. Similarly, we are able to see good con-
vergence trends in 16O at an importance truncated basis
size of Nmax = 8, as this calculation is only mildly di↵er-
ent from the the Nmax = 6 basis space calculation. Let it
be noted that given our use of the harmonic oscillator ba-
sis, all densities - and density dependent quantities - have
“unphysical” asymptotic behaviour due to the Gaussian
tail resulting from the basis expansion.

Figure 21. Ground state kinetic density results for 4,8He, 12C,
and 16O calculated with the NN-N4LO(500)+3Nlnl interac-
tion. The nonlocal densities for the nuclei were computed as
previously described in Sec. III A. The DFT kinetic density
was obtained by using Eq. (19), ⌧DFT (r) = (1� 1

A
)⌧wiCOM (r).

C. Comparison to basic COM treatment in DFT

Let us now revisit the form of Eq. (9). This Hkinetic

term has no additional treatment for the COM contam-
ination. However, a basic COM treatment can be intro-
duced in DFT [33]. In Eq. (18), a term inversely propor-
tional to the number of nucleons is subtracted from the
standard Hkinetic to treat the COM contamination:

Hkinetic(~r) =
~2
2m

✓
1� 1

A

◆
⌧0(~r) , (18)

where ⌧0 would be ⌧wiCOM in our calculations. In Fig. 21,
we show trinv, wiCOM, and DFT calculations of the ki-
netic density for 4,8He, 12C, and 16O, obtained using the
NN-N4LO(500)+3Nlnl interaction. The DFT curve is
obtained by application of Eq. (18), so

⌧DFT (~r) =

✓
1� 1

A

◆
⌧wiCOM (~r) . (19)

The most important item to note about the plots is the
di↵erence in the kinetic density profile when comparing
the ab initio calculation to the mock DFT calculation.
The e↵ects are easier seen in the lighter nuclei, where
the DFT calculation has reduced the overall size of the
wiCOM kinetic density drastically. In particular, the in-
clusion of this 1

A
term pushes the short range segments of

the DFT curve further from the ab initio translationally
invariant kinetic density, whereas the long range portions
are pushed closer. As expected, with increasing nucleon
number the total change from the wiCOM kinetic den-
sity is reduced, yet still non-negligible in a system such
as 16O.
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and percent errors for all aforementioned nuclei calculated us-
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netic density. In Fig. 19 and Fig. 20, we present ground
state Nmax convergence plots for the nuclei 4He and 16O.
We achieve rapid convergence in 4He when applying the
NN-N4LO(500)+3Nlnl interaction with a basis size of
Nmax = 10, as the final three Nmax calculations over-
lap completely. Similarly, we are able to see good con-
vergence trends in 16O at an importance truncated basis
size of Nmax = 8, as this calculation is only mildly di↵er-
ent from the the Nmax = 6 basis space calculation. Let it
be noted that given our use of the harmonic oscillator ba-
sis, all densities - and density dependent quantities - have
“unphysical” asymptotic behaviour due to the Gaussian
tail resulting from the basis expansion.

Figure 21. Ground state kinetic density results for 4,8He, 12C,
and 16O calculated with the NN-N4LO(500)+3Nlnl interac-
tion. The nonlocal densities for the nuclei were computed as
previously described in Sec. III A. The DFT kinetic density
was obtained by using Eq. (19), ⌧DFT (r) = (1� 1

A
)⌧wiCOM (r).

C. Comparison to basic COM treatment in DFT

Let us now revisit the form of Eq. (9). This Hkinetic

term has no additional treatment for the COM contam-
ination. However, a basic COM treatment can be intro-
duced in DFT [33]. In Eq. (18), a term inversely propor-
tional to the number of nucleons is subtracted from the
standard Hkinetic to treat the COM contamination:

Hkinetic(~r) =
~2
2m
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where ⌧0 would be ⌧wiCOM in our calculations. In Fig. 21,
we show trinv, wiCOM, and DFT calculations of the ki-
netic density for 4,8He, 12C, and 16O, obtained using the
NN-N4LO(500)+3Nlnl interaction. The DFT curve is
obtained by application of Eq. (18), so

⌧DFT (~r) =
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A

◆
⌧wiCOM (~r) . (19)

The most important item to note about the plots is the
di↵erence in the kinetic density profile when comparing
the ab initio calculation to the mock DFT calculation.
The e↵ects are easier seen in the lighter nuclei, where
the DFT calculation has reduced the overall size of the
wiCOM kinetic density drastically. In particular, the in-
clusion of this 1

A
term pushes the short range segments of

the DFT curve further from the ab initio translationally
invariant kinetic density, whereas the long range portions
are pushed closer. As expected, with increasing nucleon
number the total change from the wiCOM kinetic den-
sity is reduced, yet still non-negligible in a system such
as 16O.
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Nucleus Nmax hTinti hTwiCOM i hTDFT i

4He 14 51.91 66.91 50.18

6He 12 78.26 93.26 77.72

8He 10 116.30 131.30 114.89

12C 8 IT 219.84 234.84 215.27

16O 8 IT 301.69 316.69 296.90

Table II. Ground state mean intrinsic kinetic energy values
using trinv, wiCOM, and DFT kinetic densities for all afore-
mentioned nuclei, calculated with the NN-N4LO(500)+3Nlnl
interaction. All hTii values are in MeV. Note IT refers to an
importance truncated basis space. The hTDFT i is calculated
by using Eq. (19), hTDFT i = (1� 1

A
)hTwiCOM i.

In Table II, we present the mean kinetic energy values
for the trinv, wiCOM, and DFT calculations. Compar-
ing the hTinti and hTDFT i columns, one can see that the
mean values agree well across both COM removal tech-
niques, with the hTDFT i consistently slightly underesti-
mating the true value of the mean. The inclusion of this
1
A

term in the DFT calculation appears to reduce the
integral of the kinetic density appropriately, e↵ectively
removing spurious COM contamination from the mean
value intrinsic kinetic energy, albeit with a very di↵erent
structural prediction for the kinetic density.

IV. CONCLUSIONS

The purpose of this work was to provide ab initio pre-
dictions for the kinetic density, a fundamental input of
energy functionals in DFT, such that comparisons can

then be produced for both the many-body methods and
the COM removal techniques. We used the approach of
Ref. [2] to construct both COM contaminated and trans-
lationally invariant nonlocal one-body densities. The ki-
netic densities were then computed following the proce-
dure outlined in Sec. II C, which provided an analytic
expression in terms of the one-body density matrix el-
ements that was then evaluated numerically. The nu-
clear density and kinetic density results were obtained
using the SRG-evolved NN-N4LO(500)+3Nlnl chiral in-
teraction [2, 22].

The calculation of the one-body density matrix ele-
ments and nonlocal densities requires the knowledge of
the many-body nuclear wave functions, which in this
work were computed from the ab initio NCSM approach.
In Sec. III A, we showed results with and without the
ground state COM contamination for the densities of
4,6,8He, 12C, and 16O, obtained from the NCSM wave
functions. As observed in the Sec. III B, the COM re-
moval process produces non-negligible structure changes
in both the nonlocal densities and, further, in the kinetic
densities. In Sec. III C, we performed a comparison of
the trinv kinetic density to a basic COM removal tech-
nique used in DFT. While the COM treatment provided
good agreement for the mean value intrinsic kinetic en-
ergy of the nuclei, the DFT kinetic density was shown to
be structurally di↵erent from the ab initio calculations.

In conclusion, the development of a general nonlocal
density allows for the calculation of fundamental quanti-
ties taken as input in theories such as DFT. This provides
the communities with a means to better gauge the di↵er-
ences in many-body techniques and procedures for COM
removal. Although the COM removal e↵ect is reduced
in larger A-nucleon systems, it is still non-negligible and
can motivate the need to include a procedural technique
for removing the COM or motivate a check against the
existing techniques of COM removal.

V. APPENDIX

A. Derivative of radial harmonic oscillator function

To begin, we introduce existing derivative and recurrence relations for Laguerre polynomials:

d

dr
L
l

n
(r) = �L

l+1
n�1(r) (20)

L
l

n
(r) + L

l+1
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l+1
n

(r) (21)

Recall that the radial harmonic oscillator (RHO) function is given by
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Include more many nucleon correlations…
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12Unified approach to bound & continuum states; to nuclear structure & reactions

§ No-core shell model (NCSM)
§ A-nucleon wave function expansion in the harmonic-

oscillator (HO) basis
§ short- and medium range correlations
§ Bound-states, narrow resonances

§ NCSM with Resonating Group Method (NCSM/RGM)
§ cluster expansion, clusters described by NCSM
§ proper asymptotic behavior 
§ long-range correlations
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§ Most efficient: ab initio no-core shell model with continuum (NCSMC)
NCSMC

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).
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Coupled NCSMC equations

Lawrence Livermore National Laboratory 9 LLNL#PRES#650082 

… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be p, B8( )H radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(SQ1 Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,
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15Deuterium-Tritium fusion

§ The d+3H®n+4He reaction
§ The most promising for the production of fusion energy in the near future
§ Used to achieve inertial-confinement (laser-induced) fusion at NIF, and 

magnetic-confinement fusion at ITER
§ With its mirror reaction, 3He(d,p)4He, important for Big Bang nucleosynthesis NIF

ITER
Resonance at Ecm =48 keV (Ed=105 keV) 
in the J=3/2+ channel
Cross section at the peak: 4.88 b

17.64 MeV energy released:
14.1 MeV neutron and 3.5 MeV alpha



16n-4He scattering and 3H+d fusion within NCSMC
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The d-3H fusion takes place through a transition
of d+3H is S-wave to n+4He in D-wave: 
Importance of the tensor and 3N force

4He+n

4He+n -> 3H+d

4S3/2

2D3/2
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18NCSMC phenomenology

Eλ
NCSM energies treated as 
adjustable parameters 

Lawrence Livermore National Laboratory 9 LLNL#PRES#650082 

… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Ab initio predictions for polarized DT 
thermonuclear fusion 
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Summary 
 
The fusion of deuterium (D) with tritium (T) is the most promising of the reactions that could 
power the thermonuclear reactors of the future. Already favored for its low activation energy 
and high yield, it may lead to even more efficient energy generation if obtained in a polarized 
state, i.e. with the spin of the reactants aligned. While the DT fusion rate has been measured 
extensively, very little is known of the effects of polarization. Meanwhile, arriving at a 
fundamental understanding of the fusion process in terms of the laws of quantum mechanics 
and the underlying theory of the strong force has been a daunting challenge. We use nuclear 
forces derived from chiral effective field theory and apply the ab initio reaction method known 
as no-core shell model with continuum to predict for the first time the enhancement factor of 
the polarized DT fusion rate and anisotropy of the emitted neutron and α particle.  

Article 
 
Thermonuclear reaction rates of light nuclei are critical to nuclear science applications ranging 
from the modeling of big-bang nucleosynthesis and the early phases of stellar burning to the 
exploration of nuclear fusion as a terrestrial source of energy. The low-energy regime (tens to 
hundreds of keV) typical of nucleosynthesis and fusion plasmas is challenging to probe due to 
low counting rates and the screening effect of electrons, which in a laboratory are bound to the 
reacting nuclei. A predictive understanding of thermonuclear reactions is therefore needed 
alongside experiments to achieve the accuracy and/or provide part of the nuclear data required 
by these applications. An emblematic example is the fusion of deuterium (D) with tritium (3H 
or T) nuclei to generate an 4He nucleus (D-particle), a neutron and 17.6 MeV of energy released 
in the form of kinetic energy of the products. This reaction, used at facilities such as ITER1 and 
NIF2 in the pursuit of sustained fusion-energy production, is characterized by a pronounced 
resonance at 65 keV of excitation energy due to the formation of the 𝐽 = 3 2⁄ + resonance of the 
unbound 5He nucleus. Fifty years ago, it was estimated3 that, in the ideal scenario in which the 
spins of the reactants are perfectly aligned in a total-spin 3 2⁄  configuration and assuming that 
the reaction is isotropic, one could achieve an enhancement of the cross section by a factor of 
𝛿 = 1.5, thus improving the economics of fusion energy generation4. However, the 
enhancement factor of such polarized fusion in a realistic setting (with D and T spins only 
partially aligned) has never been measured5. More generally, what little is known about the 
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as no-core shell model with continuum to predict for the first time the enhancement factor of 
the polarized DT fusion rate and anisotropy of the emitted neutron and α particle.  
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from the modeling of big-bang nucleosynthesis and the early phases of stellar burning to the 
exploration of nuclear fusion as a terrestrial source of energy. The low-energy regime (tens to 
hundreds of keV) typical of nucleosynthesis and fusion plasmas is challenging to probe due to 
low counting rates and the screening effect of electrons, which in a laboratory are bound to the 
reacting nuclei. A predictive understanding of thermonuclear reactions is therefore needed 
alongside experiments to achieve the accuracy and/or provide part of the nuclear data required 
by these applications. An emblematic example is the fusion of deuterium (D) with tritium (3H 
or T) nuclei to generate an 4He nucleus (D-particle), a neutron and 17.6 MeV of energy released 
in the form of kinetic energy of the products. This reaction, used at facilities such as ITER1 and 
NIF2 in the pursuit of sustained fusion-energy production, is characterized by a pronounced 
resonance at 65 keV of excitation energy due to the formation of the 𝐽 = 3 2⁄ + resonance of the 
unbound 5He nucleus. Fifty years ago, it was estimated3 that, in the ideal scenario in which the 
spins of the reactants are perfectly aligned in a total-spin 3 2⁄  configuration and assuming that 
the reaction is isotropic, one could achieve an enhancement of the cross section by a factor of 
𝛿 = 1.5, thus improving the economics of fusion energy generation4. However, the 
enhancement factor of such polarized fusion in a realistic setting (with D and T spins only 
partially aligned) has never been measured5. More generally, what little is known about the 
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Structure of 7Be and 7Li 
considering binary breakup 

thresholds

NCSMC with SRG evolved chiral NN 



7Be system

3He + 4He Jp = 3/2- Jp = 1/2-

Ebound -1.519 -1.256
E [MeV] -36.98 -36.71

p + 6Li Jp = 3/2- Jp = 1/2-

Ebound -5.729 -5.389
E [MeV] -36.47 -36.13

Analyzed mass partitions
• 3He + 4He
• p + 6Li

Exp. Jp = 3/2-

E [MeV] -37.60



7Be – Reproducing the energy spectrum 
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7Be – Reproducing the energy spectrum 
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7Be – Reproducing the energy spectrum 
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7Be – New negative-parity states

0 2 4 6 8 10 12 14
E

kin
 [MeV]

-30

0

30

60

90

120

150

180

210

240

270

300

330

360

δ
 [

d
eg

]

N
3
LO (Λ = 500 MeV)

λ
SRG

 = 2.15 fm
-1

N
max

 = 11
3
He + 

4
He

p + 
6
Li

Threshold

2
F

7/2

2
F

5/2



7Li system

Analyzed mass partitions
• 3H + 4He
• n + 6Li
• p + 6He

3H + 4He Jp = 3/2- Jp = 1/2-

Ebound -2.432 -2.153
E [MeV] -38.65 -38.37

n + 6Li Jp = 3/2- Jp = 1/2-

Ebound -7.381 -7.048
E [MeV] -38.13 -37.79

p + 6He Jp = 3/2- Jp = 1/2-

Ebound -10.40 -10.06
E [MeV] -38.06 -37.73

Exp. Jp = 3/2-

E [MeV] -39.245
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7Li – Reproducing the energy spectrum
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7Li – Reproducing the energy spectrum
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7Li – New negative-parity states
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7Li – New negative-parity states
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S-factor for 3He(a,g)7Be and 3H(a,g)7Li reactions

�(E) = S(E)E�1 exp[�2⇡⌘(E)]
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The 3He(α, γ )7Be and 3H(α, γ )7Li astrophysical S factors are calculated within the no-core shell model 
with continuum using a renormalized chiral nucleon–nucleon interaction. The 3He(α, γ )7Be astrophysical 
S factors agree reasonably well with the experimental data while the 3H(α, γ )7Li ones are overestimated. 
The seven-nucleon bound and resonance states and the α + 3He/3H elastic scattering are also studied 
and compared with experiment. The low-lying resonance properties are rather well reproduced by our 
approach. At low energies, the s-wave phase shift, which is non-resonant, is overestimated.

© 2016 The Authors and Lawrence Livermore National Laboratory. Published by Elsevier B.V. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

SCOAP3.

1. Introduction

The 3He(α, γ )7Be and 3H(α, γ )7Li radiative-capture processes 
hold great astrophysical significance. Their reaction rates for col-
lision energies between ∼ 20 and 500 keV in the center-of-mass 
(c.m.) frame are essential to calculate the primordial 7Li abundance 
in the universe [1–3]. In addition, standard solar model predic-
tions for the fraction of pp-chain branches resulting in 7Be versus 
8B neutrinos depend critically on the 3He(α, γ )7Be astrophysical S
factor at about 20 keV c.m. energy [4,5]. Because of the Coulomb 
repulsion between the fusing nuclei, these capture cross sections 
are strongly suppressed at such low energies and thus hard to 
measure directly in a laboratory.

Concerning the 3He(α, γ )7Be radiative capture, experiments 
performed by several groups in the last decade have led to quite 
accurate cross-section determinations for collision energies be-
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tween about 90 keV and 3.1 MeV in the c.m. frame [6–13]. How-
ever, theoretical models or extrapolations are still needed to pro-
vide the capture cross section at solar energies [14]. In contrast, 
experimental data are less precise and also much less extensive for 
the 3H(α, γ )7Li radiative capture. The most recent experiment was 
performed twenty years ago resulting in measurements at collision 
energies between about 50 keV and 1.2 MeV in the c.m. frame [15].

Theoretically, these radiative captures have also generated much 
interest: from the development of pure external-capture models in 
the early 60’s [16] to the microscopic approaches from the late 80’s 
up to now [17–19,3,20] (see Ref. [5] for a short review). However, 
no parameter-free approach is able to simultaneously reproduce 
the latest experimental 3He(α, γ )7Be and 3H(α, γ )7Li astrophys-
ical S factors. To possibly fill this gap, an ab initio approach, re-
lying on a realistic inter-nucleon interaction, is highly desirable. 
The ab initio no-core shell model with continuum (NCSMC) [21,
22] has been successful in the simultaneous description of bound 
and scattering states associated with realistic Hamiltonians [23,24]. 
This approach can thus be naturally applied to the description of 
radiative-capture reactions, which involve both scattering (in the 
initial channels) and bound states (in the final channels).

In this letter, we present the study of the 3He(α, γ )7Be
and 3H(α, γ )7Li radiative-capture reactions with the NCSMC ap-
proach [21,22], using a renormalized chiral nucleon–nucleon (N N) 
interaction. This is the first NCSMC study where the lightest col-
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§ Ab initio calculations of nuclear structure and reactions with 
predictive power becoming feasible beyond the lightest nuclei

§ Ab initio structure calculations can even reach (selected) medium 
& medium-heavy mass nuclei

§ These calculations make connections between the low-energy 
QCD, many-body systems, and nuclear astrophysics
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Thank you!
Merci!


