Recent applications of equation of motion phonon method

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/

> Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET'18), Gif-sur-Yvette, November 2018

Equation of Motion Phonon Method

Equation of Motion Phonon Method (EMPM):

Features:

- nuclear ground state properties
- energy spectra
- collective excitations
- wide-range applicability (across the nuclear chart)
- exact treatment of Pauli principle (unlike the methods based on RPA)
- applicable on any nuclear Hamiltonian but usually realistic Hamiltonian is adopted

Applications:

EMPM first developed for even-even nuclei Phys. Rev. C 85 014313 (2012), Phys. Rev. C 90 014310 (2014), Phys. Rev. C 92 054315 (2015)

HF

1p-1h

corr

- quasiparticle formulation of EMPM for open-shell nuclei Phys. Rev. C 93 044314 (2016)
- EMPM extended to even-odd nuclei Phys. Rev. C 94 061301 (2016), Phys. Rev. C 95 034327 (2017)
- extension of EMPM to hypernuclei in progress...

EMPM

Hilbert space – divided into subspaces

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

HF – Hartree-Fock state (nucleons occupy lowest single-particle levels)
1p-1h = 1particle – 1hole excitation of HF
2p-2h = 2particle – 2hole excitation of HF

np-nh = n**particle** – n**hole** excitation of HF

Instead of multiple particle-hole excitations we can excite multiple TDA phonons

Tamm-Dancoff (TDA) phonons

 $O^{\dagger}_{\nu} = \sum_{ph} c^{\nu}_{ph} a^{\dagger}_{p} a_{\hat{h}}$

Phonons = linear combination of 1p-1h excitations can represent **collective modes**

 $\mathcal{H}_0 = \{ |HF > \}$ $\mathcal{H}_1 = \{ O_{\nu_1}^{\dagger} | HF > \}$ $\mathcal{H}_2 = \{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} | HF > \}$

$$\mathcal{H}_{n} = \{O_{\nu_{1}}^{\dagger}O_{\nu_{2}}^{\dagger}...O_{\nu_{n}}^{\dagger}|HF>\}$$

EMPM

 $\begin{aligned} \mathcal{H}_{0} &= \{ |HF > \} \\ \mathcal{H}_{1} &= \{ O_{\nu_{1}}^{\dagger} |HF > \} \\ \mathcal{H}_{2} &= \{ O_{\nu_{1}}^{\dagger} O_{\nu_{2}}^{\dagger} |HF > \} \end{aligned}$

 $\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} ... O_{\nu_n}^{\dagger} | HF > \right\}$

the total **Hamiltonian** mixes configurations from different **Hilbert subspaces**

Equation of Motion (EoM) – recursive eq. to solve eigen-energies on each i-phonon subspace while knowing the (i-1)-phonon solution

 $< i, \beta_i | [\hat{H}, O_{\nu}^{\dagger}] | i - 1, \alpha_{i-1} > = (E_{\beta_i}^i - E_{\alpha_{i-1}}^{i-1}) < i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} >$

non-diagonal blocks of **Hamiltonian** calculated from amplitudes $< i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} >$

we diagonalize the total Hamiltonian

Ground State Correlations

NN interaction - χ NNLO_{opt} A. Ekström et al., PRL 110, 192502 (2013)

2-phonon correlations in the g.s.

 $|\Psi_{g.s.}>\approx C_{HF}^{g.s.}|HF>+\sum_{\mu_2}C_{\mu_2}^{g.s.}|i=2,\mu_2>$

⁴He

¹⁶O

⁴⁰Ca

-13

-14

-15

-16

-49

-50

-51

-148

-152

E_{HF}[MeV]

(a)

(b)

(c)

G. De Gregorio, J. Herko, F. Knapp, N. Lo ludice, P. Veselý, PRC 95, 024306 (2017)

TABLE I. Binding energies per nucleon. The EMPM value for 40 Ca was obtained for $N_{max} = 8$, which is not an extremal point.

BE/A (MeV)						
^A X	HF	PT	EMPM	Exp.		
⁴ He	3.96	7.07	6.67	7.07		
¹⁶ O	3.22	8.29	6.77	7.98		
⁴⁰ Ca	4.00	9.77	7.02	8.55		

N_{max} – maximal osc. shell

 $h\omega$ – parameter of basis

Final energy must be converged with respect to N_{max} and for N_{max} big enough independent on $h\omega$...

FIG. 4. The EMPM ground-state energy of $^4{\rm He}$ (a) and $^{16}{\rm O}$ (b) versus the HO frequency ω for different $N_{\rm max}.$

 $\mathsf{E}_{\mathsf{EMPM}}$

Ground State Correlations 2-phonon correlations in the g.s.

FIG. 7. HF and EMPM point proton radii of ⁴He (a) and ¹⁶O (b) versus N_{max} for fixed frequency ($\hbar \omega = 26 \text{ MeV}$).

 $|\Psi_{g.s.}>\approx C_{HF}^{g.s.}|HF>+\sum_{\mu_2}C_{\mu_2}^{g.s.}|i=2,\mu_2>$

proton point radii

$$< r_p^2 > = < \Psi_{g.s.} | r_p^2 | \Psi_{g.s.} > = < r_p^2 >_{HF} + < r_p^2 >_{corr.}$$

G. De Gregorio, J. Herko, F. Knapp, N. Lo Iudice, P. Veselý, PRC 95, 024306 (2017)

FIG. 6. Systematic of root-mean-square point proton radii computed in HF. The calculations are performed for $N_{max} = 14$ and different HO frequencies ω . The experimental data are from Ref. [49].

^ <i>AX</i>	HF	r_p (fm) EMPM	Exp.
⁴ He	1.38	1.40	1.46
¹⁶ O	2.25	2.26	2.57

Ground State - NNN Force

NN+NNN interaction - χ **NNLO**_{sat} (Ekström et al. **Phys. Rev. C** 91 (2015) 051301R)

HO basis

$$V = (2n + I)$$

 $h\omega = 16 \text{ MeV}$

 \mathbf{N}_{\max} up to 12

charged radii

Table 1: The charge radii $r_{\rm ch} = \sqrt{\langle r_{\rm ch}^2 \rangle}$ [fm] of ¹⁶O and ⁴⁰Ca calculated with NN and NN + NNN forces are compared with the experimental data (exp) [23].

^{A}X	NN	NN + NNN	\exp
¹⁶ O	2.19	2.77	2.70
^{40}Ca	2.58	3.54	3.48

HF energy

Table 2: Binding energies per nucleon BE/A [MeV] calculated with NN and with NN + NNN forces in ¹⁶O and ⁴⁰Ca compared to the experimental values (exp).

^{A}X	NN	NN + NNN	\exp
¹⁶ O	7.36	2.66	7.98
^{40}Ca	11.65	2.31	8.55

HF underestimates g.s. energy (correlations necessary)

However NNN force improves significantly radii & single-particle energies already at the mean-field level

P. Veselý, G. De Gregorio, J. Pokorný, accepted to Phys. Scr.

¹⁵O, ¹⁵N, ²¹O, ²¹N- hole coupled to (multi)phonon excitations NN interaction - χ NNLO_{opt}

G. De Gregorio, F. Knapp, N. Lo Iudice, P. Veselý, sent to Phys. Rev. C (2018)

Lowest states – predominantly from hole-1phonon configurations For better description, stronger coupling to more-phonon configs. needed

¹⁵O, ¹⁵N, ²¹O, ²¹N- hole coupled to (multi)phonon excitations NN interaction - χ NNLO_{opt}
 G. De Gregorio, F. Knapp, N. Lo Iudice, P. Veselý, sent to Phys. Rev. C (2018)
 ground states – predominantly the hole-states nature

EMPM for Hypernuclei

$\widehat{H} = \widehat{T}_N + \widehat{T}_\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda N} - \widehat{T}_{CM}$

NN+NNN interaction - χ **NNLO**_{sat} (Ekström et al. **Phys. Rev. C** 91 (2015) 051301R) **AN** part of **YN** interaction - χ **LO** (H. Polinder, J. Haidenbauer, U. Meissner, **Nucl. Phys. A** 779 (2006) 244) **cut-off** λ = 550 MeV

so far implemented: extension of HF+TDA formalism on hypernuclei \rightarrow proton-neutron- Λ HF + Λ N TDA

(replacement of the **nucleon** by Λ)

work in progress: - adding Λ - Σ coupling and Λ NN SRG induced force into the formalism - coupling to (multi)phonon configurations

Outlook

next goals:

- study of the role of NNN interaction in nuclear ground state properties
- more systematic studies of odd nuclei heavier systems
- further extensions of EMPM formalism odd-odd nuclei, hypernuclei, ...
- transitions in nuclei GDR, M1, GMR, β decay (2 β decay) ...
- possibly calculations of electroproduction of hypernuclei

⁴⁰Ca (e,e' K⁺) ${}^{40}_{\Lambda}$ K ⁴⁸Ca (e,e' K⁺) ${}^{48}_{\Lambda}$ K

List of Collaborators

Nuclear Physics Institute, Czech Academy of Sciences

Petr Veselý Jan Pokorný Giovanni De Gregorio

Institute of Nuclear and Particle Physics, Charles University František Knapp

Universita degli Studi Federico II, Napoli

Thank you!!