Shape coexistence and collective low-spin states in ^{112,114}Sn (Lifetime measurements with SONIC@HORUS)

M. Spieker et al., PRC 97, 054319 (2018)

Mark Spieker¹, P. Petkov^{2,3}, S. G. Pickstone², S. Prill², P. Scholz², and A. Zilges²

¹ NSCL, Michigan State University, East Lansing, MI 48824, USA
 ² Institute for Nuclear Physics, University of Cologne, Germany
 ³IFIN-HH, Bucharest, Romania

Bonn-Cologne Graduate School of Physics and Astronomy

supported by DFG (ZI 510/7-1)

MS supported in part by the National Science Foundation under Contract No. PHY-1565546 (NSCL)

Sn – transitional nuclei and collectivity?

[[]Figures: NNDC, NuDat (2018)]

Sn isotopes considered as one of the prime examples for spherical nuclei

- → Well-developed Z = 50 magic shell closure (no significant contribution of protons to low-lying excitation spectrum)
- \rightarrow Little variation of $E_{2^+_1}$, i.e. no strong p-n interaction and no onset of deformation

The $B(E2; 0_1^+ \rightarrow 2_1^+)$ puzzle understood?

Novel Shape Evolution in Sn Isotopes from Magic Numbers 50 to 82

Tomoaki Togashi,¹ Yusuke Tsunoda,¹ Takaharu Otsuka,^{2,1,3,4,5,*} Noritaka Shimizu,¹ and Michio Honma⁶
 ¹Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ²Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
 ⁴Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
 ⁵National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ⁶Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

- Activating protons in the 1g_{9/2} shown to provide a possible explanation (proton holes)
 - \rightarrow Breaking of Z = 50 core!
 - → Modest prolate deformation in
 N = 50 to 64 isotopes
 - → 2nd-order phase transition from modestly deformed to pairing phase in Sn nuclei (N = 66)!

[T. Togashi, Y. Tsunoda, T. Otsuka, et al., PRL 121, 062501 (2018)]

 $\overline{V \in R S | T | Y}$ M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

The $B(E2; 0_1^+ \rightarrow 2_1^+)$ puzzle understood?

Novel Shape Evolution in Sn Isotopes from Magic Numbers 50 to 82

Tomoaki Togashi,¹ Yusuke Tsunoda,¹ Takaharu Otsuka,^{2,1,3,4,5,*} Noritaka Shimizu,¹ and Michio Honma⁶
 ¹Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ²Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
 ⁴Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
 ⁵National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ⁶Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

- Activating protons in the 1g_{9/2} shown to provide a possible explanation (proton holes)
 - \rightarrow Breaking of Z = 50 core!
 - → Modest prolate deformation in
 N = 50 to 64 isotopes
 - → 2nd-order phase transition from modestly deformed to pairing phase in Sn nuclei (N = 66)!

[T. Togashi, Y. Tsunoda, T. Otsuka, et al., PRL 121, 062501 (2018)]

Shape coexistence in Sn isotopes

[P.E. Garrett, J. Phys. G 43, 084002 (2016); D. Rowe and J.L. Wood, Models of Nuclear Structure: Foundational Models (World Scientific, Singapore, 2010)]

- Excited 0⁺ state strongly excited in two-proton transfer reaction
 - \rightarrow 2p-2h proton structure?
- Parabolic evolution of additional structure with minimum at midshell
 - \rightarrow One of the key signatures of intruder configurations
- Large $\rho^2(E0; 0_3^+ \rightarrow 0_2^+)$ suggests strong mixing between excited 0⁺ states in ¹¹⁶Sn
 - \rightarrow Which 0⁺ state is the bandhead of the intruder structure?
- Collective intraband E2 transitions

Shape coexistence in Sn isotopes

[J.L. Pore et al., EPJA 52, 27 (2017); D. Rowe and J.L. Wood, Models of Nuclear Structure: Foundational Models (World Scientific, Singapore, 2010)]

- Excited 0⁺ state strongly excited in two-proton transfer reaction
 - \rightarrow 2p-2h proton structure?
- Parabolic evolution of additional structure with minimum at midshell
 - \rightarrow One of the key signatures of intruder configurations
- Large $\rho^2(E0; 0_3^+ \rightarrow 0_2^+)$ suggests strong mixing between excited 0⁺ states in ¹¹⁶Sn
 - \rightarrow Which 0⁺ state is the bandhead of the intruder structure?
- Collective intraband E2 transitions

Collective structures in Sn isotopes?

Collective structures in Sn isotopes?

Quasi-rotational structure of Cd isotopes and mixing between the different configurations

(are there "true" vibrational states at all?)

Collective structures in Sn isotopes?

Experimental requirements:

- Selective probe needed to excite those low-spin states (non-Yrast)
- Small γ-decay branching ratios need to be detected
- Lifetimes and multipole-mixing ratios need to be measured for the determination of reduced transition strengths

Proton-γ coindicences with SONIC@HORUS

10 MV FN Tandem ion accelerator

- Three ion sources available
 - \rightarrow typically ions up to Z = 30
- Terminal voltages from 1 MV to 10 MV
- Current on target up to 1 μA (protons)
- Experimental setups: new AMS beamline, Plunger setup, Orange spectrometer, LYCCA, HORUS spectrometer

The SONIC@HORUS setup

HORUS for γ -ray detection

- Up to 14 HPGe detectors ($\epsilon_{\text{FEP}} \sim 2\%$ @ 1.3 MeV)
 - → Six BGO shields and two Clover HPGe detectors available

SONIC for particle detection

- 7-12 silicon detectors (thickness \leq 1.5 mm)
- Particle-γ coincidences (Lifetimes, branching ratios, angular correlations)

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

Proton-γ coindicences with SONIC@HORUS

py-coincidence matrix

M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

(p,p' γ) DSA coincidence technique

(p,p'γ) DSA coincidence technique: A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

(p,p' γ) DSA coincidence technique

Our method is very similar to the (n,n' γ) technique used at the University of Kentucky (USA)

(p,p'γ) DSA coincidence technique: A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

Lifetimes of intruder states in ^{112,114}Sn

M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	<i>Ι_γ</i> [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]
1256.5(2)	2^{+}_{1}	0_{1}^{+}	1256.5(2)	100	1299.7(2)	2^{+}_{1}	0_{1}^{+}	1299.7(2)	100
2150.5(3)	2^{+}_{2}	0_{1}^{+}	2150.5(2)	20(3)	1952.9(2)	0^{+}_{2}	2^{+}_{1}	653.2(2)	100
	2^{+}_{2}	2^{+}_{1}	893.9(2)	100	2155.9(2)	0_{3}^{+}	2^{+}_{1}	856.2(2)	100
					2187.3(3)	4_{1}^{+}	2^{+}_{1}	887.6(2)	100
2190.5(2)	0^{+}_{2}	2^+_1	934.0(2)	100	2238.6(2)	2^{+}_{2}	0_{1}^{+}	2238.5(2)	100
2247.0(3)	4_{1}^{+}	2^+_1	990.47(10)	100		2^{+}_{2}	2^{+}_{1}	938.9(2)	81(12)
2353.7(2)	3^{-}_{1}	2^+_1	1097.2(2)	100		$2^{\frac{2}{+}}_{2}$	0^{+}_{2}	286.5(10)	0.9(3)
2475.5(2)	2^+_3	0_{1}^{+}	2475.5(2)	100	2274.5(2)	$3\frac{1}{1}$	2^{2}_{1}	974.8(2)	100
	2^{+}_{3}	2^{+}_{1}	1218.9(2)	36(5)	2420.5(2)	0^{+}_{4}	$2^{\frac{1}{+}}$	1120.8(2)	100
	2^+_3	0^{+}_{2}	284.9(2)	0.70(10)	2453.8(2)	2^{4}_{2}	0_{1}^{+}	2453.7(2)	28(4)
2520.5(2)	4^+_2	2^+_1	1264.0(2)	100	(_)	2^{+}_{2}	2^{+}_{1}	1154.0(2)	100
		:	-			2^{+}_{2}	2^{+}_{2}	215.4(4)	1.3(3)
		Ŀ			2514.4(2)	3^{+}_{1}	4^{+}_{1}	327.1(2)	100
2945.0(7)	4+	2^{+}_{1}	1688.5(2)	100	2613.7(4)	4^{+}_{2}	2^{+}_{1}	1314.5(2)	100
	4+	2^{+}_{2}	794.2(2)	5.4(10)		4^{+}_{2}	4^{+}_{1}	426.0(4)	1.6(6)
	4+	$4_1^{\tilde{+}}$	697.9(2)*	<1.5		4+	2+	375.2(3)	1.8(6)
	4+	2^{+}_{3}	469.5(2)	18(3)		•2	-2	0,012(0)	110(0)
	4+	4^{+}_{2}	424.6(3)*	4.9(9)					
	4+	6_{1}^{+}	396.4(4)*	2.3(5)					
	4+	4+	$161.4(2)^*$	9(2)					

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	<i>Ι_γ</i> [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]
1256.5(2)	2^{+}_{1}	0_{1}^{+}	1256.5(2)	100	1299.7(2)	2^{+}_{1}	0_{1}^{+}	1299.7(2)	100
2150.5(3)	2^{+}_{2}	0_{1}^{+}	2150.5(2)	20(3)	1952.9(2)	0^+_2	2^{+}_{1}	653.2(2)	100
	2^{+}_{2}	2^+_1	893.9(2)	100	2155.9(2)	$-\frac{1}{0_{3}^{+}}$	2^{+}_{1}	856.2(2)	100
· — — — ·					2187.3(3)	4_{1}^{+}	2^{+}_{1}	887.6(2)	100
2190.5(2)	0^+_2	2_1^+	934.0(2)	100	2238.6(2)	2^{+}_{2}	0^+_1	2238.5(2)	-100
2247.0(3)	-4_1^+	2_{1}^{+}	990.47(10)	100		2^{+}_{2}	2^{+}_{1}	938.9(2)	81(12)
2353.7(2)	3_{1}^{-}	2^+_1	1097.2(2)	100		2^{+}_{2}	0^{+}_{2}	286.5(10)	0.9(3)
2475.5(2)	2^+_3	0^+_1	2475.5(2)	100	2274.5(2)	$-\frac{2}{3_1^-}$	$-\frac{2}{2_1^+}$	974.8(2)	-100
1	2^+_3	2^+_1	1218.9(2)	36(5)	2420.5(2)	0_{4}^{+}	2^{+}_{1}	1120.8(2)	100
	$-\frac{2_3}{4+}$	$-\frac{0_2}{2^+}$	$-\frac{284.9(2)}{1264.9(2)}$	0.70(10)	2453.8(2)	2^{+}_{3}	0_{1}^{+}	2453.7(2)	28(4)
2520.5(2)	42	2_{1}^{+}	1264.0(2)	100		2^{+}_{3}	2^{+}_{1}	1154.0(2)	100
		:	-			2^{+}_{3}	2^{+}_{2}	215.4(4)	1.3(3)
					2514.4(2)	3_{1}^{+}	$-4^{\tilde{+}}_{1}$	327.1(2)	100
2945.0(7)	4+	2_{1}^{+}	1688.5(2)	100	2613.7(4)	4^{+}_{2}	2^{+}_{1}	1314.5(2)	100
1	4+	2^{+}_{2}	794.2(2)	5.4(10)		4^{+}_{2}	4^{+}_{1}	426.0(4)	1.6(6)
	4+	4_1^+	697.9(2)*	<1.5		4^{+}_{2}	2^{+}_{2}	375.2(3)	1.8(6)
Ì	4+	2^+_3	469.5(2)	18(3)					
1	4+	4_{2}^{+}	424.6(3)*	4.9(9)					
1	4+	6_{1}^{+}	396.4(4)*	2.3(5)	.—				
	4+	4+	161.4(2)*	9(2)	I	"intr	uder	" states $ $	
* New γ-deo	cay branch	ing			L				

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	$I_{\gamma} [\%]$
1256.5(2)	2_{1}^{+}	0_{1}^{+}	1256.5(2)	100	1299.7(2)	2^{+}_{1}	0^{+}_{1}	1299.7(2)	100
2150.5(3)	2^{+}_{2}	0_{1}^{+}	2150.5(2)	20(3)	1952.9(2)	0^+_2	2^+_1	653.2(2)	100
	2^{+}_{2}	2^+_1	893.9(2)	100	2155.9(2)	0_{3}^{+}	2^{+}_{1}	856.2(2)	100
r — — — ·					2187.3(3)	4_{1}^{+}	2_{1}^{+}	887.6(2)	100
2190.5(2)	0_2^+	2_1^+	934.0(2)	100	2238.6(2)	2^+_2	0^+_1	2238.5(2)	100
2247.0(3)	4_{1}^{+}	2_{1}^{+}	990.47(10)	100		2^{-}_{2}	2^{+}_{1}	938.9(2)	81(12)
2353.7(2)	3_{1}^{-}	2^+_1	1097.2(2)	100		2^{-}_{2}	0^{+}_{2}	286.5(10)	0.9(3)
2475.5(2)	2^+_3	0^+_1	2475.5(2)	100	2274.5(2)	$-\frac{2}{3_1}$	$\frac{1}{2_1^+}$	974.8(2)	100
-	2^+_3	2_{1}^{+}	1218.9(2)	36(5)	2420.5(2)	0_{4}^{+}	2^{+}_{1}	1120.8(2)	100
2520.5(2)	$-\frac{2_3}{4^+}$	$-\frac{0_2}{2^+}$ -	$\frac{284.9(2)}{1264.0(2)}$	0.70(10)	2453.8(2)	2^{+}_{3}	0_{1}^{+}	2453.7(2)	28(4)
2520.5(2)	42	Z_1	1264.0(2)	100		2^{+}_{3}	2^{+}_{1}	1154.0(2)	100
0+@2	2617 keV	:	-			2^{+}_{3}	2^{+}_{2}	215.4(4)	1.3(3)
					2514.4(2)	3_{1}^{+}	41	327.1(2)	100
2945.0(7)	4+	2^{+}_{1}	1688.5(2)	100	2613.7(4)	4^{+}_{2}	2^{+}_{1}	1314.5(2)	100
I	4+	2^{+}_{2}	794.2(2)	5.4(10)	-	4^{+}_{2}	4^{+}_{1}	426.0(4)	1.6(6)
	4+	4_{1}^{+}	697.9(2)*	<1.5		4^{+}_{2}	2^{+}_{2}	375.2(3)	1.8(6)
1	4+	2^{+}_{3}	469.5(2)	18(3)					· — — ·
1	4+	4_{2}^{+}	424.6(3)*	4.9(9)					
1	4+	6^+_1	396.4(4)*	2.3(5)					
	4+	4+	161.4(2)*	9(2)		"intr	uder	" states	
* New γ-deo	cay branchir	ng							
		HIGAN S	STATE M. Spie	ker – Shape c	coexistence and o	collectiv	e low-sp	in states in ^{112,11}	⁴ Sn

"Quasi-rotational structure" already existent at higher energies in Sn isotopes?

MICHIGAN STATE M.

Influence of underlying single-particle structure or overall structure change?

Different influence of neutron single-particle states?

M. Spieker – Shape coexistence and collective low-spin states in 112,114 Sn

Changing shell structure from ¹¹⁴Sn to ¹¹²Sn?

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

J_i^{π}	E_x	$E_{x,\mathrm{IBM}}$	J_f^{π}	$B(E2)_{\mathrm{exp.}}\downarrow$	$B(E2)_{\rm IBM}\downarrow$			
	[MeV]	[MeV]	-	[W.u.]	[W.u.]			
		norm	al co	nfiguration				
2_{1}^{+}	1.30	1.30	0_{1}^{+}	11.1(7)	11			
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19			
0_{2}^{+}	1.95	1.99	2_{1}^{+}	23.2(8)	21			
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004			
			2_{1}^{+}	3(2)	17			
			2^{+}_{2}	-	8			
	intruder configuration							
0^{+}_{3}	2.16	2.15	2_{1}^{+}	≤ 5	2			
2^{+}_{2}	2.24	2.46	0_{1}^{+}	≤ 0.12	0.04			
			2_{1}^{+}	≤ 8	2			
			0^{+}_{2}	≤ 44	31			
			0^{+}_{3}	-	27			
4_{2}^{+}	2.61	3.00	2_{1}^{+}	6.6(10)	0.2			
			4_{1}^{+}	1.6(10)	0.06			
			2^{+}_{2}	62(25)	85			
6^{+}	3.19	3.63	4_{1}^{+}	1.68(9)	1.5			
			4_{2}^{+}	97(5)	93			
			4_{3}^{+}	18.9(12)	0.7			

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

J_i^{π}	E_x	$E_{x,\mathrm{IBM}}$	J_f^{π}	$B(E2)_{\mathrm{exp.}}\downarrow$	$B(E2)_{\rm IBM}\downarrow$
	[MeV]	[MeV]		[W.u.]	[W.u.]
		norm	nal con	nfiguration	
2_{1}^{+}	1.30	1.30	0_{1}^{+}	11.1(7)	11
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19
0_{2}^{+}	1.95	1.99	2_{1}^{+}	23.2(8)	21
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004
			2_{1}^{+}	3(2)	17
			2^{+}_{2}	-	8
		intru	der co	nfiguration	
0^{+}_{3}	2.16	2.15		= 0.9(3) %	(Fxp.)
2^{+}_{2}	2.24	2.46	·γ,2 Ι _{γ,3}	≈ 0.002 %	6 (IBM)
			0^{+}_{2}	≤ 44	31
			0^{+}_{3}	-	27
4_2^+	2.61	³ B(I	E2) =	= 55.5(9) V	V.u. in ¹¹⁰ Pd
			2^{+}_{2}	62(25)	85
6^{+}	3.19	3.63	4_{1}^{+}	1.68(9)	1.5
			4^{+}_{2}	97(5)	93
			4_{3}^{+}	18.9(12)	0.7

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

S

						2p 2ii build
J_i^{π}	E_x [MeV]	$E_{x,\text{IBM}}$ [MeV]	J_f^{π}	$\begin{array}{c} B(E2)_{\text{exp.}} \downarrow \\ \text{[W.u.]} \end{array}$	$B(E2)_{\text{IBM}}\downarrow$ [W.u.]	B(E2) = 44(3) W.u.
		norm	al cor	figuration		$_{\gamma,2}^{641} = 5.16(14) \%$
2^{+}_{1}	1.30	1.30	0_{1}^{+}	11.1(7)	11	4_{1}^{+} 2391 / 138 304
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19	279 - 417 - 2225 - 2
0^{+}_{2}	1.95	1.99	2_{1}^{+}	23.2(8)	21	$\frac{85}{1226}$ $\frac{85}{0327}$ $0^{+}_{-}355$ 469
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004	1097 $1230 / 2027 / 1757 0 + 932 / 932 /$
			2_{1}^{+}	3(2)	17	$\begin{pmatrix} 319 \\ 1 \end{pmatrix} \begin{pmatrix} 734 \\ 463 \end{pmatrix}$
			2^{+}_{2}	-	8	
		intru	der co	nfiguration		2112 B(E2) = 100(8) M/H
0^{+}_{3}	2.16	2.15		= 0.9(3) %	(Exp.)	D(L2) = 100(8) V.d.
2^{+}_{2}	2.24	2.46	·γ,2	$\sim 0.002 %$	$(\Box \Lambda \Lambda)$	$I_{\gamma,3} = 0.0091(6) \%$
			γ,3	≈ 0.002 /6		
			0^+_2	≤ 44	31	EPJA 52, 27 (2017)
			0^+_3	-	27	0^+ 0 $+$
4_{2}^{+}	2.61	<mark>3</mark> В(I	E2) =	= 55.5(9) W	<i>l</i> .u. in ¹¹⁰ Pd	B(E2) = 40(7) W.u. in ¹¹² Pc
			2^{+}_{2}	62(25)	85	
6+	3.19	3.63	4_1^+ 4_2^+	1.68(9) 97(5)	How co	uld this large B(E2) in ¹¹⁶ Sn be explained?
			4_{3}^{2}	18.9(12)	0.7	
			-			

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

¹¹⁶Sn – Is 3rd 0⁺ bandhead?

2n-2h Band

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

S

						2p 2h Build
J_i^{π}	E_x [MeV]	$E_{x,\text{IBM}}$ [MeV]	J_f^{π}	$\begin{array}{c} B(E2)_{\text{exp.}} \downarrow \\ [\text{W.u.}] \end{array}$	$B(E2)_{\text{IBM}}\downarrow$ [W.u.]	B(E2) = 44(3) W.u
		norn	nal cor	nfiguration		$_{641}^{641}_{2520}$ $I_{\gamma,2}^{503} = 5.16(14) \%$
2_{1}^{+}	1.30	1.30	0_{1}^{+}	11.1(7)	11	4_{1}^{+} 2391 138 304
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19	279 - 417 - 2025 - 2225 - 2112 - 21
0^{+}_{2}	1.95	1.99	2_{1}^{+}	23.2(8)	21	$\frac{85}{1226}$ $\frac{85}{2227}$ $\frac{0}{3355}$ $\frac{469}{469}$
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004	1097 $1230 2027 1757 0^+_2 932 1097 1097 1230 1097 100$
			2_{1}^{+}	3(2)	17	
			2^{+}_{2}	-	8	
		intru	der co	nfiguration		$P(E_2) = 100(8) M/11$
0^{+}_{3}	2.16	2.15		= 0.9(3) %	(Exp)	B(LZ) = 100(8) VV.U.
2^{+}_{2}	2.24	2.46	γ,2			$I_{\gamma,3} = 0.0091(6) \%$
			γ ,3	≈ 0.002 %		
			0^{+}_{2}	≤ 44	31	EPJA 52. 27 (2017)
			0^+_3	-	27	O_1^+ O
4_{2}^{+}	2.61	³ B(E2) =	= 55.5(9) W	<i>l</i> .u. in ¹¹⁰ Pd	B(E2) = 40(7) W.u. in ¹¹² Pc
			2^{+}_{2}	62(25)	85	
6+	3.19	3.63	4_1^+ 4_2^+	1.68(9) 97(5)	How co	uld this large B(E2) in ¹¹⁶ Sn be explained?
			4^{+}_{3}	18.9(12)	0.7	B(E2) = 101(5) W.u. in ¹²⁰ X

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

¹¹⁶Sn – Is 3rd 0⁺ bandhead?

2n-2h Band

in ¹²⁰Xe

[C. Petrache, J.-M. Régis, C. Andreoiu, MS, et al., submitted for publication]

- Strong mixing between normal and intruder configuration
 - \rightarrow Observation of two collective decay branches with "band" structure
- IBM-2 can provide reasonable to good description of experimental data
 - → Discrepancies can be explained by imposed selection rules

(further adjustment would be possible; maybe mix O(6)-like with O(6)-like)

- Strong mixing between normal and intruder configuration
 - → Observation of two collective decay branches with "band" structure
- IBM-2 can provide reasonable to good description of experimental data
 - → Discrepancies can be explained by imposed selection rules

(further adjustment would be possible; maybe mix O(6)-like with O(6)-like)

Summary

 SONIC@HORUS to determine lifetimes and γ-decay behavior of low-spin states via (p,p'γ) DSA coincidence technique

[A. Hennig *et al.*, NIM **794**, 171 (2015)]
[S.G. Pickstone *et al.*, NIM **875**, 104 (2017)]

- Collectivity of low-spin "intruder" states studied in ^{112,114}Sn
- Mixing hypothesis between normal and intruder configuration tested via schematic IBM-2 mixing calculations
- No clear hints at quadrupole multiphonon structures in ^{112,114}Sn

 $\frac{5 \times 12}{5 \times 17}$ M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn