Partial Dynamical Symmetries for Transitional Nuclei

A. Leviatan
Racah Institute of Physics
The Hebrew University, Jerusalem, Israel

N. Gavrielov (HU)

Shapes and Symmetries in Nuclei: From Experiment to Theory (SSNET'18 Conference) Gif-sur-Yvette, France, November 5-9, 2018

Transitional Nuclei

Shape-phase transition spherical \rightarrow deformed \quad Nd-Sm-Gd
Shape coexistence

spherical \rightarrow deformed	$\mathrm{Nd}-\mathrm{Sm}-\mathrm{Gd}$
spherical-deformed	$\mathrm{Cd}, \mathrm{Sr}, \mathrm{Zr}, \mathrm{Ni}$
prolate-oblate spherical-prolate-oblate	$\mathrm{Kr}, \mathrm{Se}, \mathrm{Hg}$ ${ }^{186} \mathrm{~Pb}$

- Shell model approach
- Multiparticle-multihole intruder excitations across shell gaps
- Drastic truncation of large SM spaces
- Mean-field approach (EDF)
- Coexisting shapes associated with different minima of an energy surface
- Beyond MF methods: restoration of broken symmetries
- Symmetry-based approach
- Dynamical symmetries \leftrightarrow phases
- Geometry: coherent (intrinsic) states

Dynamical Symmetry

$\hat{H}=\sum_{G} a_{G} \hat{C}_{G}$

- Solvability of the complete spectrum $\quad E=E_{[N]\langle\Sigma\rangle \ldots \Lambda}$
- Quantum numbers for all eigenstates $|[N]\langle\Sigma\rangle \Lambda\rangle$

- Solvability of the complete spectrum

$$
\begin{aligned}
& E=E_{[N]\langle\Sigma\rangle} . \ldots \Lambda \\
& |[N]\langle\Sigma\rangle \Lambda\rangle
\end{aligned}
$$

- IBM: s (L=0) , d (L=2) bosons, N conserved (Arima, lachello 75)

$$
\mathrm{G}_{\mathrm{dyn}}=\mathrm{U}(6), \mathrm{G}_{\mathrm{sym}}=\mathrm{SO}(3)
$$

$\mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	$\left\|[\mathrm{N}] \mathrm{n}_{d} \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle$	Spherical vibrator
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	$\|[\mathrm{N}](\lambda, \mu) \mathrm{K} \mathrm{L}\rangle$	Prolate-deformed rotor
$\mathrm{U}(6) \supset \overline{\mathrm{SU}(3)} \supset \mathrm{SO}(3)$	$\|[\mathrm{N}](\bar{\lambda}, \bar{\mu}) \overline{\mathrm{K}} \mathrm{L}\rangle$	Oblate-deformed rotor
$\mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	$\left\|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle$	γ-unstable deformed rotor

Geometry

Coherent state $\quad|\beta, \gamma ; N\rangle=(N!)^{-1 / 2}\left(b_{c}^{\dagger}\right)^{N}|0\rangle$

$$
b_{c}^{\dagger}=\left(1+\beta^{2}\right)^{-1 / 2}\left[\beta \cos \gamma d_{0}^{\dagger}+\beta \sin \gamma \frac{1}{\sqrt{2}}\left(d_{2}^{\dagger}+d_{-2}^{\dagger}\right)+s^{\dagger}\right]
$$

Energy surface $\quad E_{N}(\beta, \gamma)=\langle\beta, \gamma ; N| \hat{H}|\beta, \gamma ; N\rangle$
Global min: equilibrium shape (β_{0}, γ_{0})
$\beta_{0}=0$ spherical
$\beta_{0}>0$ deformed: $\gamma_{0}=0$ (prolate), $\gamma_{0}=\pi / 3$ (oblate), $0<\gamma_{0}<\pi / 3$ (triaxial)
Intrinsic state ground band $\left|\beta_{0}, \gamma_{0} ; \mathrm{N}\right\rangle$, L-projected states $\left|\beta_{0}, \gamma_{0} ; \mathrm{N}, \mathrm{x}, \mathrm{L}\right\rangle$

Geometry

Coherent state

$$
\begin{aligned}
|\beta, \gamma ; N\rangle & =(N!)^{-1 / 2}\left(b_{c}^{\dagger}\right)^{N}|0\rangle \\
b_{c}^{\dagger} & =\left(1+\beta^{2}\right)^{-1 / 2}\left[\beta \cos \gamma d_{0}^{\dagger}+\beta \sin \gamma \frac{1}{\sqrt{2}}\left(d_{2}^{\dagger}+d_{-2}^{\dagger}\right)+s^{\dagger}\right]
\end{aligned}
$$

Energy surface $\quad E_{N}(\beta, \gamma)=\langle\beta, \gamma ; N| \hat{H}|\beta, \gamma ; N\rangle$
Global min: equilibrium shape (β_{0}, γ_{0})

$$
\beta_{0}=0 \text { spherical }
$$

$\beta_{0}>0$ deformed: $\gamma_{0}=0$ (prolate), $\gamma_{0}=\pi / 3$ (oblate), $0<\gamma_{0}<\pi / 3$ (triaxial)
Intrinsic state ground band $\left|\beta_{0}, \gamma_{0} ; N\right\rangle$, L-projected states $\left|\beta_{0}, \gamma_{0} ; N, x, L\right\rangle$

	$\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \mathrm{SO}(3)$	$\mid \mathrm{N}, \lambda_{1}, \lambda_{2}$,
U(5)	$\beta_{0}=0$	$\mathrm{n}_{\mathrm{d}}=0$
SU(3)	$\left(\beta_{0}=\sqrt{ } 2, \gamma_{0}=0\right)$	$(\lambda, \mu)=(2 N, 0)$
SU(3)	($\left.\beta_{0}=\sqrt{ } 2, \gamma_{0}=\pi / 3\right)$	$(\lambda, \mu)=(0,2 N)$
SO(6)	($\beta_{0}=1, \gamma_{0}$ arbitrary)	$\bar{\sigma} \equiv \mathrm{N}$

- Dynamical symmetry corresponds to a particular shape (β_{0}, γ_{0})
- $\mid \beta_{0}, \gamma_{0}$; $\left.N\right\rangle$ lowest (highest) weight state in a particular irrep λ_{1} of leading subalgebra \mathbf{G}_{1}
- H: 1-, 2-, 3-body terms $E_{N}(\beta, \gamma)$: quadratic, quartic, sextic $\beta^{2}, \beta^{3} \cos 3 \gamma$

Dynamical Symmetry

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \mathrm{SO}(3) \quad\left|\mathrm{N}, \lambda_{1}, \lambda_{2}, \ldots, \mathrm{~L}\right\rangle \quad\left(\beta_{1}, \gamma_{1}\right)
$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for the dynamics of a single shape

$$
\left[\mathrm{G}_{1}=\mathrm{U}(5), \mathrm{SU}(3), \overline{\mathrm{SU}(3)}, \mathrm{SO}(6)\right]
$$

Spherical, prolate-, oblate-, γ-unstable deformed
Quantum Phase Transition (QPT)

$$
\mathrm{H}(\lambda)=\lambda \mathrm{H}_{\mathrm{G} 1}+(1-\lambda) \mathrm{H}_{\mathrm{G} 2}
$$

G_{1}, G_{2} incompatible symmetries
Are there any remaining "symmetries"?

Partial Dynamical Symmetry

- Some states solvable and/or with good quantum numbers
- PDS: benchmark for the dynamics of multiple shapes

Construction of Hamiltonians with a single PDS

$$
\begin{array}{ccc}
G_{\mathrm{dyn}} \supset G \supset \cdots \supset G_{\mathrm{Sym}} \\
{[\mathrm{~N}]} & \langle\Sigma\rangle & \Lambda
\end{array}
$$

n-particle annihilation operator

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0
$$ in the irrep $\left\langle\Sigma_{0}\right\rangle$ of G

Equivalently:

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda\left|[\mathbf{N}]\left\langle\Sigma_{0}\right\rangle\right\rangle=0}
$$

- Condition is satisfied if $\langle\sigma\rangle \otimes\left\langle\Sigma_{0}\right\rangle \notin[\mathrm{N}-\mathrm{n}]$

$$
\hat{H}=\sum_{\alpha, \beta} u_{\alpha \beta} \hat{T}_{\alpha}^{\dagger} \hat{T}_{\beta}
$$

DS is broken but
solvability of states with $\langle\Sigma\rangle=\left\langle\Sigma_{0}\right\rangle$ Is preserved

Construction of Hamiltonians with a single PDS

$$
\begin{array}{ccc}
G_{\mathrm{dyn}} \supset G \supset \cdots \supset G_{\mathrm{sym}} \\
{[\mathrm{~N}]} & \langle\Sigma\rangle & \Lambda
\end{array}
$$

n-particle annihilation operator

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0
$$ in the irrep $\left\langle\Sigma_{0}\right\rangle$ of G

Equivalently:

$$
\hat{T}_{[n]}\langle\sigma\rangle \lambda\left|[\mathbf{N}]\left\langle\Sigma_{0}\right\rangle\right\rangle=0
$$

- Condition is satisfied if $\langle\sigma\rangle \otimes\left\langle\Sigma_{0}\right\rangle \notin[N-n]$

$$
\hat{H}=\sum_{\alpha, \beta} u_{\alpha \beta} \hat{T}_{\alpha}^{\dagger} \hat{T}_{\beta}
$$

DS is broken but
solvability of states with $\langle\Sigma\rangle=\left\langle\Sigma_{0}\right\rangle$ Is preserved

- PDS Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}+\hat{H}_{c} \quad$ Intrinsic collective resolution

Intrinsic part: $\quad \mathrm{H}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0$
Collective part: H_{c} composed of Casimir operators of conserved $G_{i} \subset G$ in the chain

SU(3) PDS

$U(6) \supset S U(3) \supset S O(3)$

[N] $\quad(\lambda, \mu) \mathrm{K} \quad \mathrm{L}$

$$
\left.\begin{array}{ll}
\hat{T}_{[n](\lambda, \mu) \ell m}^{\dagger} & P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \tag{2,0}\\
P_{2, \mu}^{\dagger}=2 s^{\dagger} d_{\mu}^{\dagger}+\sqrt{7}\left(d^{\dagger} d^{\dagger}\right)_{\mu}^{(2)}
\end{array}\right\}(\lambda, \mu)=(0,2), \quad\left(2,{ }^{\prime}\right)
$$

$$
H=h_{0} P_{0}^{\dagger} P_{0}+h_{2} P_{2}^{\dagger} \cdot \tilde{P}_{2}
$$

$$
(\lambda, \mu)=(0,0) \oplus(2,2)
$$

$$
H\left(h_{0}=h_{2}\right)=\left[-\hat{C}_{S U(3)}+2 \hat{N}(2 \hat{N}+3)\right]
$$

SU(3) PDS $\quad \hat{H}^{\prime}=h_{0} P_{0}^{\dagger} P_{0}+h_{2} P_{2}^{\dagger} \cdot \tilde{P}_{2}+\rho \hat{C}_{2}[\mathrm{SO}(3)]$

Empirical manifestation: ${ }^{168} \mathrm{Er}$ (Leviatan, PRL 1996)
Rare earth \& actinides (Casten et al. PRL 2014, PRC 2015, 2016)

Multiple PDS and Shape Coexistence

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) \quad\left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle \quad\left(\beta_{1}, \gamma_{1}\right)
$$

Single PDS
Single shape

$$
\hat{H}\left|\beta_{1}, \gamma_{1} ; N, \lambda_{1}=\Lambda_{0}, \lambda_{2}, \ldots, L\right\rangle=0
$$

Multiple PDS and Shape Coexistence

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) \quad\left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle \quad\left(\beta_{1}, \gamma_{1}\right)
$$

Single PDS
Single shape

$$
\hat{H}\left|\beta_{1}, \gamma_{1} ; N, \lambda_{1}=\Lambda_{0}, \lambda_{2}, \ldots, L\right\rangle=0
$$

$$
\begin{array}{lll}
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle & \left(\beta_{1}, \gamma_{1}\right) \\
\mathrm{U}(6) \supset \mathrm{G}_{1}^{\prime} \supset \mathrm{G}_{2}^{\prime} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \sigma_{1}, \sigma_{2}, \ldots, L\right\rangle & \left(\beta_{2}, \gamma_{2}\right)
\end{array}
$$

Multiple PDS

$$
\left\{\begin{aligned}
\hat{H}\left|\beta_{1}, \gamma_{1} ; N, \lambda_{1}=\Lambda_{0}, \lambda_{2}, \ldots, L\right\rangle & =0 \\
\hat{H}\left|\beta_{2}, \gamma_{2} ; N, \sigma_{1}=\Sigma_{0}, \sigma_{2}, \ldots, L\right\rangle & =0
\end{aligned}\right.
$$

$\mathrm{G}_{1} \neq \mathrm{G}_{1}^{\prime}$
Critical-point Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}+\hat{H}_{\mathrm{c}}$ G_{1}-PDS \& G_{1}-PDS

Intrinsic part: \hat{H} determines $\mathrm{E}(\beta, \gamma) \quad$ band structure
Collective part: $\hat{H}_{\mathrm{c}}=\sum_{\mathrm{G}_{\mathrm{i}}} a_{\mathrm{G}_{\mathrm{i}}} \hat{C}_{\mathrm{G}_{\mathrm{i}}} \quad$ rotational splitting
\longrightarrow conserved G_{i} in both chains

$$
\begin{array}{lll}
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle & \left(\beta_{1}, \gamma_{1}\right) \\
\mathrm{U}(6) \supset \mathrm{G}_{1}^{\prime} \supset \mathrm{G}_{2}^{\prime} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \sigma_{1}, \sigma_{2}, \ldots, L\right\rangle & \left(\beta_{2}, \gamma_{2}\right)
\end{array} \quad \mathrm{G}_{1} \neq \mathrm{G}_{1}^{\prime}
$$

Symmetry-based Approach to Shape-Coexistence

$\mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	Spherical vibrator	$\beta=0$
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	Prolate-deformed rotor	$\beta=\sqrt{ } 2, \gamma=0$
$\mathrm{U}(6) \supset \mathrm{SU(3)} \supset \mathrm{SO}(3)$	Oblate-deformed rotor	$\beta=\sqrt{ } 2, \gamma=\pi / 3$
$\mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	γ-unstable deformed rotor	$\beta=1, \gamma$ arbitrary

Multiple PDS and Multiple Shapes

$\mathrm{G}_{1}=\mathrm{U}(5)$	$\mathrm{G}_{2}=\mathrm{SU}(3)$	spherical - prolate
$\mathrm{G}_{1}=\mathrm{SU}(3)$	$\mathrm{G}_{2}=\mathrm{SU}(3)$	prolate - oblate \star
$\mathrm{G}_{1}=\mathrm{U}(5)$	$\mathrm{G}_{2}=\mathrm{SO}(6)$	spherical $-\gamma$-unstable

Triple coexistence
$\mathrm{G}_{1}=\mathrm{U}(5) \mathrm{G}_{2}=\mathrm{SU}(3) \mathrm{G}_{3}=\overline{\mathrm{SU}(3)}$ spherical-prolate-oblate *

- Leviatan, PRL 98, 242502 (2007); Macek, A.L. 351, 302 (2014)
* Leviatan, Shapira, PRC 93, 051302(R) (2016)

A Leviatan, Gavrielov, Phys. Scr. 92, 114005 (2017)

SU(3) and $\overline{S U(3)}$ Dynamical Symmetries

Prolate-Oblate Shape Coexistence

Intrinsic part of C.P. Hamiltonian

$$
\left\{\begin{array}{l}
\hat{H}|N,(\lambda, \mu)=(2 N, 0), K=0, L\rangle=0 \\
\hat{H}|N,(\bar{\lambda}, \bar{\mu})=(0,2 N), \bar{K}=0, L\rangle=0
\end{array}\right.
$$

$$
\hat{H}=h_{0} P_{0}^{\dagger} \hat{n}_{s} P_{0}+h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \quad G_{3, \mu}^{\dagger}=\sqrt{7}\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]_{\mu}^{(3)}
$$

Energy Surface $\tilde{E}(\beta, \gamma)=z_{0}+\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+B \beta^{6} \Gamma^{2}+D \beta^{4}+F \beta^{2}\right] \quad \Gamma=\cos 3 \gamma$
oblate-prolate

Two degenerate P -O global minima $(\beta=\sqrt{ } 2, \gamma=0)$ and $(\beta=\sqrt{ } 2, \gamma=\pi / 3)$

$$
E(\beta, \gamma)
$$

Saddle points support a barrier separating the various minima

$$
E(\beta, \gamma=0)
$$

Normal modes:

$$
\begin{array}{rll}
\mathrm{E} & \beta_{2}= & =\beta_{1} \\
0.1-\gamma_{2}= & -\gamma_{1} \\
0.0- & g_{2}- & -g_{1}
\end{array}
$$

$$
\begin{aligned}
& \epsilon_{\beta 1}=\epsilon_{\beta 2}=\frac{8}{3}\left(h_{0}+2 h_{2}\right) N^{2} \\
& \epsilon_{\gamma 1}=\epsilon_{\gamma 2}=4 \eta_{3} N^{2}
\end{aligned}
$$

Complete Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}\left(h_{0}, h_{2}, \eta_{3}\right)+\alpha \hat{\theta}_{2}+\rho \hat{C}_{2}[\mathrm{SO}(3)]$

$$
\begin{aligned}
& \alpha \hat{\theta}_{2}=\alpha\left[-\hat{C}_{2}[S U(3)]+2 \hat{N}(2 \hat{N}+3)\right] \\
& \tilde{\alpha}\left(1+\beta^{2}\right)^{-2}\left[\left(\beta^{2}-2\right)^{2}+2 \beta^{2}\left(2-2 \sqrt{2} \beta \Gamma+\beta^{2}\right)\right] \quad \tilde{\alpha}=\alpha /(N-2)
\end{aligned}
$$

$\overline{\mathrm{SU}(3)}$ decomposition

Ground g_{1} band: pure $\operatorname{SU}(3)$-DS states ($2 \mathrm{~N}, 0$)
Ground g_{2} band: pure $\overline{\mathrm{SU}(3)}$-DS states $(0,2 \mathrm{~N})$ Excited β and γ bands: considerable mixing
$\Rightarrow \mathrm{SU}(3)-\mathrm{PDS}$ coexisting with $\overline{\mathrm{SU}(3)}$-PDS

SU(3) decomposition

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right) \quad(1,1) \oplus(2,2) \text { tensor }
$$

E2 selection rule: $g_{1} \nLeftarrow g_{2}$
P-O coexistence

$T(E 0) \propto \hat{n}_{d} \quad(0,0) \oplus(2,2)$ tensor EO selection rule: $g_{1} \leftrightarrow g_{2}$
$Q_{L}=\mp e_{B} \sqrt{\frac{16 \pi}{40}} \frac{L}{2 L+3} \frac{4(2 N-L)(2 N+L+1)}{3(2 N-1)}$
$B\left(E 2 ; g_{i}, L+2 \rightarrow g_{i}, L\right)=$

$$
e_{B}^{2} \frac{3(L+1)(L+2)}{2(2 L+3)(2 L+5)} \frac{(4 N-1)^{2}(2 N-L)(2 N+L+3)}{18(2 N-1)^{2}}
$$

Prolate-Oblate $\mathrm{SU}(3)-\overline{\mathrm{SU}(3)} \mathrm{PDSs}$

| E | | | $-\gamma^{\text {(c) }}$ |
| ---: | :--- | :--- | :--- | | Spherical-Prolate |
| :--- |
| 0.4 |
| 0.2 |

E0.1		(c)
		$-\beta$
0.1	$-n_{d}=1$	
0.0	$-n_{d}=0$	-g

Shape coexistence near shell closure

- Multiparticle-multihole intruder excitations across shell gaps
- Interacting boson model with configuration mixing (IBM-CM) [Duval, Barrett, PLB 81]

Op-0h, $2 p-2 h, 4 p-4 h, \ldots \rightarrow[N] \oplus[N+2] \oplus[N+4] \ldots \quad$ normal \oplus intruder states

- Hamiltonian $\quad \hat{H}=\left(\begin{array}{cc}\hat{H}_{\text {normal }}^{(N)} & \hat{V}_{\text {mix }} \\ \hat{V}_{\text {mix }} & \hat{H}_{\text {intruder }}^{(N+2)}\end{array}\right)$
- Geometry \(E(\beta, \gamma)=\left(\begin{array}{cc}E_{N}(\beta, \gamma) \& W(\beta, \gamma)

W(\beta, \gamma) \& E_{N+2}(\beta, \gamma)\end{array}\right) \quad\)| Matrix coherent states |
| :--- |
| $\mathrm{E}_{ \pm}(\beta, \gamma)$ |

[Frank, Van Isacker, Vargas, PRC 2004]

$$
\begin{aligned}
E_{N}(\beta, \gamma) & =\langle\beta, \gamma ; N| \hat{H}_{\text {normal }}^{(N)}|\beta, \gamma ; N\rangle \\
E_{N+2}(\beta, \gamma) & =\langle\beta, \gamma ; N+2| \hat{H}_{\text {intruder }}^{(N+2)}|\beta, \gamma ; N+2\rangle \\
W(\beta, \gamma) & =\langle\beta, \gamma ; N| \hat{V}_{\text {mix }}|\beta, \gamma ; N+2\rangle
\end{aligned}
$$

Applications: Po, Hg, Pb.. [Garcia-Ramos, Heyde, Van Isacker, Nomura, Robledo...]

$$
\begin{gathered}
\text { [W.u.] EXP } \\
\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{3} \rightarrow 2_{1}\right)<7.9 \\
\mathrm{~B}\left(\mathrm{E} 2 ; 2_{5} \rightarrow 4_{1}\right)<5 \\
\mathrm{~B}\left(\mathrm{E} 2 ; 2_{5} \rightarrow 2_{2}\right)<0.7^{+0.5}-0.6 \\
\mathrm{~B}\left(\mathrm{E} 2 ; \mathrm{O}_{4} \rightarrow 2_{2}\right) \text { small } \mathrm{BR}
\end{gathered}
$$

$B\left(E 2 ; 2_{1} \rightarrow 0_{1}\right)=27.0$ (8) W.u. U(5)

$$
\begin{equation*}
46.29 \text {. } \tag{5}
\end{equation*}
$$

$$
19.84
$$

$$
\begin{aligned}
& \left(n_{d}=2 \rightarrow n_{d}=1\right) \\
& \left(n_{d}=3 \rightarrow n_{d}=2\right)
\end{aligned}
$$

$$
11.02
$$

57.86

Garret et al. PRC (2012)

- Attempted solution: normal-intruder mixing

intruder levels

$$
\hat{H}=\left(\begin{array}{cc}
\hat{H}_{\mathrm{U}(5)}^{(N)} & \hat{V}_{\operatorname{mix}} \\
\hat{V}_{\operatorname{mix}} & \hat{H}_{\mathrm{SO}(6)}^{(N+2)}
\end{array}\right)
$$

Requires strong (maximal ~50\%) mixing to reproduce $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{3} \rightarrow 2_{1}\right)<7.9 \mathrm{~W} . \mathrm{u}$, but results in discrepancy in the decay pattern of other states
\Rightarrow Strong normal-intruder mixing refuted

- Claims: "Breakdown of vibrational motion in Cd isotopes" (Garrett PRC 2008) "Need for a paradigm change"
- Attempted solution: normal-intruder mixing

$$
\hat{H}=\left(\begin{array}{cc}
\hat{H}_{\mathrm{U}(5)}^{(N)} & \hat{V}_{\mathrm{mix}} \\
\hat{V}_{\operatorname{mix}} & \hat{H}_{\mathrm{SO}(6)}^{(N+2)}
\end{array}\right)
$$

Requires strong (maximal ~50\%) mixing to reproduce $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{3} \rightarrow 2_{1}\right)<7.9 \mathrm{~W} . \mathrm{u}$, but results in discrepancy in the decay pattern of other states

\Rightarrow Strong normal-intruder mixing refuted

- Claims: "Breakdown of vibrational motion in Cd isotopes" (Garrett PRC 2008) "Need for a paradigm change"
- Alternative approach:

$$
\left.\begin{array}{lll}
\text { good } \cup(5) & \text { Class } A: n_{d}=\tau=0,1,2,3\left(n_{\Delta}=0\right) & 0_{1}(0), 2_{1}(658), 4_{1}(1542), 2_{2}(1476) \\
6_{1}(2480), 4_{2}(2220), 3_{1}(2163)
\end{array}\right\} \begin{array}{ll}
\text { Class } B: n_{d}=\tau+2=2,3\left(n_{\Delta}=0\right) & 0_{3}(1731), 2_{5}(2356) \\
\text { broken } \cup(5) & \left\{\begin{array}{l}
\text { (20ss } C: n_{d}=\tau=3\left(n_{\Delta}=1\right)
\end{array}\right.
\end{array}
$$

- Some states with good U(5) symmetry
- Some states break $U(5)$ symmetry
\Rightarrow Partial Dynamical Symmetry

U(5) PDS

$$
U(6) \supset U(5) \supset S O(5) \supset S O(3) \quad\left|[N] n_{d} \tau n_{\Delta} L\right\rangle
$$

$$
\hat{H}_{P D S}=\hat{H}_{D S}+\hat{V}_{0}
$$

$$
\hat{V}_{0}=r_{0} G_{0}^{\dagger} G_{0}+e_{0}\left(G_{0}^{\dagger} K_{0}+K_{0}^{\dagger} G_{0}\right) \quad G_{0}^{\dagger}=\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]^{(0)} \quad K_{0}^{\dagger}=s^{\dagger}\left(d^{\dagger} d^{\dagger}\right)^{(0)}
$$

$$
\hat{V}_{0}\left|\mathrm{~N}, \mathrm{n}_{\mathrm{d}}=\tau, \tau, \mathrm{n}_{\Delta}=0, \mathrm{~L}\right\rangle=0 \quad \text { Class } \mathrm{A} \text { : solvable Classes B,C: mixed }
$$

U(5) PDS-CM

$$
\begin{aligned}
& \hat{H}=\left(\begin{array}{cc}
\hat{H}_{\text {normal }}^{(N)} & \hat{V}_{\text {mix }} \\
\hat{V}_{\text {mix }} & \hat{H}_{\text {intruder }}^{(N+2)}
\end{array}\right) \\
& \begin{array}{l}
\hat{H}_{\text {normal }}^{(N)}=\hat{H}_{\text {PDS }}
\end{array} \quad \begin{array}{l}
\hat{H}_{\text {intruder }}^{(N+2)}=\kappa \hat{Q} \cdot \hat{Q}+\Delta \\
\hat{V}_{\text {mix }}=\alpha\left[\left(d^{\dagger} d^{\dagger}\right)^{(0)}+\left(s^{\dagger}\right)^{2}+\text { H.c. }\right]
\end{array} \\
& |\Psi\rangle=a\left|\Psi_{n}^{(N)}\right\rangle+b\left|\Psi_{i}^{(N+2)}\right\rangle \\
& \hat{T}(E 2)=e_{B}^{(N)} \hat{Q}^{(N)}+e_{B}^{(N+2)} \hat{Q}^{(N+2)}, \\
& \hat{Q}=d^{\dagger} s+s^{\dagger} \tilde{d}
\end{aligned}
$$

Normal and intruder levels in ${ }^{110} \mathrm{Cd}$

- U(5)-PDS-CM: good description of empirical data
- Normal states of class A retain good $\mathrm{U}(5)$ symmetry and n_{d} quantum number
- Non-yrast states of classes B \& C [$\left.\mathrm{O}_{3}(1731), \mathrm{O}_{4}(2079), 2_{5}(2356)\right]$: dramatic changes
- Weak normal-intruder mixing (small b2) $|\Psi\rangle=a\left|\Psi_{n}^{(N)}\right\rangle+b\left|\Psi_{i}^{(N+2)}\right\rangle$

U(5)-PDS-CM
U(5)-DS
$\mathrm{n}_{\mathrm{d}}=\tau$
Majority of normal states (class A) are pure wrt U(5) (> 97\%) Weak normal-intruder mixing
$0_{3}(1731):\left(0.9 \% n_{d}=2\right),\left(94 \% n_{d}=3\right), \quad(5.1 \%$ intruder $)$
0_{4} (2079): $\left(79.8 \% n_{d}=2\right),\left(2 \% n_{d}=3\right), \quad(18 \%$ intruder $)$
$2_{5}(2356):\left(1.2 \% \quad n_{d}=3\right),\left(95.8 \% n_{d}=4\right),(2.9 \%$ intruder $)$
$\mathrm{n}_{\mathrm{d}}=2$
$\mathrm{n}_{\mathrm{d}}=3$
$n_{d}=3$

L_{i}	L_{f}	EXP	$\mathrm{U}(5)$-DS	U(5)-PDS-CM	E 2 transitions in ${ }^{110} \mathrm{Cd}$					
2_{1}^{+}	0_{1}^{+}	27.0 (8)	27.00	27.00						
4_{1}^{+}	2_{1}^{+}	42 (9)	46.29	45.93	[W.U.]	EXP		U(5)-PDS-CM		
2_{2}^{+}	2_{1}^{+}	30 (5)	46.29	46.32						
	0_{1}^{+}	1.35 (20); $0.68(14)^{a}$	0.00	0.00						
0_{3}^{+}	2_{2}^{+}	$<1680^{\text {a }}$	0.00	55.95						
	2_{1}^{+}	$<7.9^{a}$	46.29	0.25						
6_{1}^{+}	4_{1}^{+}	40 (30); $62(18)^{a}$	57.86	55.30	$B\left(E 2 ; 0_{3} \rightarrow 2_{1}\right)$		<7.9	0.25		
	4_{2}^{+}	$<5^{a}$	0.00	0.00			<7.9			
	$4_{3 ; i}^{+}$	$14(10) ; 36(11)^{a}$		2.39	$B\left(E 2 ; 2_{5} \rightarrow 4_{1}\right)$		<5	0.19		
4_{2}^{+}	4_{1}^{+}	12_{-6}^{+4}	27.55	27.45			-			
	2_{2}^{+}	32_{-14}^{+10}	30.31	30.03	$B\left(E 2 ; 2_{5} \rightarrow 2_{2}\right)$		$<0.7{ }^{+0.5}$	$0.6 \quad 0.12$		
	2_{1}^{+}	$0.20_{-0.09}^{+0.06}$	0.00	0.00						
	$2_{3 ; i}^{+}$	$<0.5^{a}$		0.005						
3_{1}^{+}	4_{1}^{+}	$5.9_{-4.6}^{+1.8}$	16.53	16.48	L_{i}		EXP	U(5)-PDS-CM		
	2_{2}^{+}	32_{-24}^{+8}	41.33			L_{f}				
	2_{1}^{+}	$1.1_{-0.8}^{+0.3} ; 0.85(25)^{a}$	0.00	41.12 0.00	$0_{2 ; i}^{+}$	2_{1}^{+}	$<40^{a}$	14.18		
	$2_{3 ; i}^{+}$	$<5^{a}$		0.012	$2_{3 ; i}^{+}$	$0_{2 ; i}^{+}$	$29(5)^{a}$	29.00		
0_{4}^{+}	2_{2}^{+}	$\left[<0.65{ }^{\text {a }}\right.$]	57.86	1.24		0_{1}^{+}	$0.31{ }_{-0.12}^{+0.08}$	0.08		
	2_{1}^{+}	[0.010 ${ }^{a}$]	0.00	31.76		2_{1}^{+}	$0.7_{-0.4}^{+0.3}$	0.00		
	$2_{3 ; i}^{+}$	[100 ${ }^{\text {a }}$]		16.32		2_{2}^{+}	$<8^{a}$	0.96		
2_{5}^{+}	0_{3}^{+}	$24.2(22)^{a}$	27.00	22.28	$2_{4 ; i}^{+}$$4_{3 ; i}^{+}$	2_{1}^{+}	$0.019_{-0.01}^{+0.020}$	0.10		
	4_{1}^{+}	$<5^{a}$	19.84	0.19		${ }^{+}$		0.49		
	2_{2}^{+}	${ }^{a} 0.7_{-0.6}^{+0.5}$	11.02	0.12		2_{1}^{+}	$0.22_{-0.19}^{+0.09}$			
	2_{1}^{+}	$2.8{ }_{-1.0}^{+0.6}$	0.00	0.00		2_{2}^{+}	$2.2{ }_{-2.2}^{+1.4}$	0.00		
	$2_{3 ; i}^{+}$	$<5^{a}$		0.002		$2_{3 ; i}^{+}$	120_{-110}^{+50}	42.62		
	$0_{2 ; i}^{+}$	$<1.9^{a}$		0.20		4_{1}^{+}	$2.6_{-2.6}^{+1.6}$	0.00		

$$
\hat{H}=\left(\begin{array}{cc}
\hat{H}_{\mathrm{U}(5)-\mathrm{PDS}}^{(N)} & \hat{V}_{\text {mix }} \\
\hat{V}_{\text {mix }} & \hat{H}_{\mathrm{SO}(6)}^{(N+2)}
\end{array}\right)
$$

Normal states: U(5)-PDS good n_{d} for class A states Intruder states: SO(6) "good" σ $\mathrm{V}_{\text {mix }} \quad$ small

Concluding Remarks

A symmetry-based approach
N. Gavrielov (HU)
J.E. Garcia-Ramos (Huelva)
P. Van Isacker (GANIL)

- Quantum phase transitions with multiple shapes

Single DS
or PDS
:---
PDSs

$\left[G_{i}=U(5), S U(3), \overline{\mathrm{SU}(3)}\right.$, SO(6)]

- A single number-conserving rotational invariant H; DS preserved in selected bands
- Higher-order terms
- Solvable bands unmixed. Strong band-mixing can destroy the PDS
- Shape coexistence near shell closure

$$
\hat{H}=\left(\begin{array}{cc}
\hat{H}_{G_{1}}^{(N)} & \hat{V}_{\text {mix }} \\
\hat{V}_{\text {mix }} & \hat{H}_{G_{2}}^{(N+2)}
\end{array}\right) \quad\left(\begin{array}{cc}
\hat{H}_{\mathrm{U}(5)}^{(N)} & \hat{V}_{\text {mix }} \\
\hat{V}_{\text {mix }} & \hat{H}_{\mathrm{SO}(6)}^{(N+2)}
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
\hat{H}_{\mathrm{U}(5)-\mathrm{PDS}}^{(N)} & \hat{V}_{\text {mix }} \\
\hat{V}_{\text {mix }} & \hat{H}_{\mathrm{SO}(6)}^{(N+2)}
\end{array}\right) \quad{ }^{110} \mathrm{Cd}
$$

$-\mathrm{G}_{1} \mathrm{DS} \rightarrow \mathrm{G}_{1}$ PDS

- Strong \rightarrow weak normal-intruder mixing
- G_{1} DS maintained in selected normal states and G_{2} DS in intruder states

Thank you

