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Transitional Nuclei 

• Shell model approach
- Multiparticle-multihole intruder excitations across shell gaps
- Drastic truncation of large SM spaces

• Mean-field approach (EDF)
- Coexisting shapes associated with different minima of an energy surface
- Beyond MF methods: restoration of broken symmetries

• Symmetry-based approach
- Dynamical symmetries ↔ phases
- Geometry: coherent (intrinsic) states

Shape-phase transition         spherical → deformed       Nd-Sm-Gd

Shape coexistence                spherical-deformed            Cd, Sr, Zr, Ni
prolate-oblate                    Kr, Se, Hg
spherical-prolate-oblate    186Pb                                         



Dynamical Symmetry

• Solvability of the complete spectrum

• Quantum numbers for all eigenstates



Dynamical Symmetry

• Solvability of the complete spectrum

• Quantum numbers for all eigenstates

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable deformed rotor     

• IBM:  s (L=0) , d (L=2) bosons, N conserved (Arima, Iachello 75)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

Gdyn = U(6), Gsym = SO(3)



Geometry

Coherent state

Global min: equilibrium shape (β0,γ0)

Energy surface 

β0 = 0 spherical
β0 > 0 deformed: γ0 =0 (prolate), γ0 = π/3 (oblate),  0 < γ0 < π/3 (triaxial)

Intrinsic state ground band |β0,γ0; N〉,      L-projected states |β0,γ0; N,x,L〉



Geometry

Coherent state

Global min: equilibrium shape (β0,γ0)

Energy surface 

β0 = 0 spherical
β0 > 0 deformed: γ0 =0 (prolate), γ0 = π/3 (oblate),  0 < γ0 < π/3 (triaxial)

U(5) β0 = 0                                     nd = 0
SU(3) (β0 = √2, γ0 = 0)                      (λ,µ) = (2N,0) 
SU(3) (β0 = √2, γ0 = π/3)                   (λ,µ) = (0,2N) 
SO(6) (β0 = 1, γ0 arbitrary)                σ = N

Intrinsic state ground band |β0,γ0; N〉,      L-projected states |β0,γ0; N,x,L〉

• |β0,γ0; N〉 lowest (highest) weight state in a particular irrep λ1 of leading subalgebra G1

• Dynamical symmetry corresponds to a particular shape (β0,γ0)

U(6) ⊃ G1 ⊃ G2 ⊃ … SO(3)               |N, λ1, λ2,…,L〉

• H: 1-, 2-, 3-body terms   EN(β,γ): quadratic, quartic, sextic β2 , β3cos3γ



Dynamical Symmetry

• Complete solvability
• Good quantum numbers for all states
• DS: benchmark for the dynamics of a single shape

U(6) ⊃ G1 ⊃ G2 ⊃ … SO(3)      |N, λ1, λ2,…,L〉

Spherical, prolate- , oblate-, γ-unstable deformed
[G1 = U(5), SU(3), SU(3), SO(6)]

Partial Dynamical Symmetry

• Some states solvable and/or with good quantum numbers
• PDS: benchmark for the dynamics of multiple shapes

Are there any remaining “symmetries” ?

Leviatan, Prog. Part. Nucl. Phys. 66, 93 (2011)

(β1,γ1)

Quantum Phase Transition (QPT)

H(λ)  = λ HG1 + (1- λ) HG2

G1, G2 incompatible symmetries             

1st order

λc

2nd order

β β

λc



Construction of Hamiltonians with a single PDS 

[N] 〈Σ〉 Λ

|[N] 〈Σ0〉 Λ〉 = 0 
n-particle 
annihilation 
operator

for all possible Λ contained 
in the irrep 〈Σ0〉 of G

• Condition is satisfied if  〈σ〉⊗〈Σ0〉 ∉ [N-n]
DS is broken but 
solvability of states with 〈Σ〉 = 〈Σ0〉 Is preserved

|[N] 〈Σ0〉 〉 = 0 Lowest weight state 〉Equivalently:

Alhassid,  Leviatan, J. Phys. A 25, L1265 (1992)
Garcia-Ramos,  Leviatan,  Van Isacker, PRL 102, 112502 (2009)



Construction of Hamiltonians with a single PDS 

[N] 〈Σ〉 Λ

|[N] 〈Σ0〉 Λ〉 = 0 
n-particle 
annihilation 
operator

for all possible Λ contained 
in the irrep 〈Σ0〉 of G

• Condition is satisfied if  〈σ〉⊗〈Σ0〉 ∉ [N-n]
DS is broken but 
solvability of states with 〈Σ〉 = 〈Σ0〉 Is preserved

|[N] 〈Σ0〉 〉 = 0 Lowest weight state 〉Equivalently:

• PDS Hamiltonian

Intrinsic part:   H|[N] 〈Σ0〉 Λ〉 = 0 
Collective part:  Hc composed of Casimir operators of conserved Gi ⊂ G in the chain  

Intrinsic collective resolution



SU(3) PDS 

U(6) ⊃ SU(3) ⊃ SO(3)    
[N] (λ,µ)   K L

(λ,µ) = (0,0)⊕(2,2)

SU(3) PDS

(λ,µ) = (0,2)

(λ,µ) = (2N,0)

(2,0) ⊗ (2N,0) ∉ [N-2]

Single shape (β=√2,γ=0)

Empirical manifestation: 168Er  (Leviatan, PRL 1996)
Rare earth & actinides (Casten et al. PRL 2014, PRC 2015, 2016) 



Multiple PDS and Shape Coexistence 

(β1,γ1)

Single PDS
Single shape



Multiple PDS and Shape Coexistence 

(β1,γ1)

Single PDS
Single shape

(β1,γ1)
(β2,γ2)

Multiple PDS
Multiple shapes {

Collective part:                                        rotational splitting

Critical-point Hamiltonian
G1 -PDS & G’1 -PDS

Intrinsic part:         determines E(β,γ)      band structure

conserved Gi in both chains



Departure from the Critical Point

(β1,γ1)
(β2,γ2)



Symmetry-based Approach to Shape-Coexistence 

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) Spherical vibrator                β = 0 
U(6) ⊃ SU(3) ⊃ SO(3) Prolate-deformed rotor        β = √2, γ = 0

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) γ-unstable deformed rotor   β =1, γ arbitrary 

Multiple PDS and Multiple Shapes

G1 = U(5) G2 = SU(3) spherical – prolate ♦
G1 = SU(3) G2 = SU(3) prolate – oblate ♣
G1 = U(5) G2 = SO(6) spherical - γ-unstable ♠

G1 = U(5)  G2 = SU(3) G3 = SU(3) spherical-prolate-oblate ♣

U(6) ⊃ SU(3) ⊃ SO(3) Oblate-deformed rotor         β = √2, γ = π/3

Triple coexistence 

♣ Leviatan, Shapira, PRC 93, 051302(R) (2016) 

♦ Leviatan, PRL 98, 242502 (2007); Macek, A.L. 351, 302 (2014)   

♠ Leviatan, Gavrielov, Phys. Scr. 92, 114005 (2017)  



(0,2N)

(2,2N-4)

(2N,0)

(2N-4,2)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

SU(3) and SU(3) Dynamical Symmetries

SU(3)SU(3) DS spectra are identical

Quadrupole moments 
of corresponding states 
differ in sign prolateoblate



{
Intrinsic part of C.P. Hamiltonian

Energy Surface

(0,2N)

(2,2N-4)

(2N,0)

(2N-4,2)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

SU(3) and SU(3) Dynamical Symmetries

SU(3)SU(3) DS spectra are identical

Quadrupole moments 
of corresponding states 
differ in sign 

Prolate-Oblate Shape Coexistence

prolateoblate



E(β,γ)

E(β,γ=0)
Saddle points support 
a barrier separating 
the various minima

Normal modes:

oblate-prolate

Two degenerate P-O global minima
(β=√2,γ = 0) and (β=√2,γ = π/3)



Complete Hamiltonian

Ground g1 band: pure SU(3)-DS states (2N,0)
Ground g2 band: pure SU(3)-DS states (0,2N)
Excited β and γ bands: considerable mixing 

⇒ SU(3)-PDS coexisting with SU(3)-PDS

SU(3) decomposition SU(3) decomposition

oblate prolate



(1,1) ⊕ (2,2) tensor

E2 selection rule: g1 ↔ g2

(0,0) ⊕ (2,2) tensor

E0 selection rule: g1 ↔ g2

ANALYTIC expressions !

P-O coexistence



U(5)-SO(6) PDSs

Prolate-Oblate

SU(3)-SU(3) PDSs

Spherical-P-O

U(5)-SU(3)-SU(3) 
PDSs

U(5)-SU(3) PDSs

Spherical-Prolate

Spherical-
γ-unstable deformed



- Multiparticle-multihole intruder excitations across shell gaps

Shape coexistence near shell closure  

- Interacting boson model with configuration mixing (IBM-CM) [Duval, Barrett , PLB 81]

0p-0h, 2p-2h, 4p-4h,… → [N] ⊕ [N+2] ⊕ [N+4]…      normal⊕ intruder states

• Hamiltonian

• Geometry
Matrix coherent states
E±(β,γ)   Eigenpotentials

Applications: Po, Hg, Pb..     [Garcia-Ramos, Heyde, Van Isacker, Nomura, Robledo… ]

[Frank, Van Isacker, Vargas, PRC 2004] 



110Cd

110Cd U(5) DS

Most normal states good spherical vibrator 

B(E2; 03 → 21) <  7.9

B(E2; 25 → 41) <  5
B(E2; 25 → 22) < 0.7+0.5

-0.6

B(E2; 04 → 22)  small BR

BUT:

(nd = 2 → nd = 1)       

(nd = 3 → nd =2 )       

Garret et al. PRC (2012)

46.29 .
19.84
11.02

[W.u.]            EXP U(5)

57.86

normal intruder

B(E2; 21 → 01) = 27.0 (8) W.u.



intruder levelsnormal  levels

Requires strong (maximal ∼ 50%) mixing
to reproduce B(E2; 03 → 21) <  7.9 W.u,
but results in discrepancy in the decay pattern 
of other  states 

110Cd

⇒ Strong normal-intruder mixing refuted

• Claims: “Breakdown of vibrational motion in Cd isotopes”  (Garrett PRC 2008)
“Need for a paradigm change”

• Attempted solution:  normal-intruder mixing 



intruder levelsnormal  levels

Requires strong (maximal ∼ 50%) mixing
to reproduce B(E2; 03 → 21) <  7.9 W.u,
but results in discrepancy in the decay pattern 
of other  states 

110Cd

⇒ Strong normal-intruder mixing refuted

• Claims: “Breakdown of vibrational motion in Cd isotopes”  (Garrett PRC 2008)
“Need for a paradigm change”

Class A: nd = τ = 0,1,2,3 (n∆ = 0)       01(0), 21(658), 41(1542), 22(1476)
61(2480), 42(2220), 31(2163)

Class B: nd = τ+2 = 2,3 (n∆ = 0)         03(1731), 25(2356)
Class C: nd = τ = 3 (n∆ = 1)                04(2079){

• Some states with good U(5) symmetry
• Some states break U(5) symmetry ⇒ Partial Dynamical Symmetry

good U(5)

broken U(5)

• Alternative approach:

• Attempted solution:  normal-intruder mixing 



U(5) PDS  

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉

|N, nd = τ ,τ, n∆ = 0, L 〉 = 0

U(5) PDS-CM  

Class A: solvable   Classes B,C: mixed 

U(5)-PDS

SO(6)



Normal and intruder levels in 110Cd

• Non-yrast states of classes B & C [ 03(1731), 04(2079), 25(2356) ]: dramatic changes

• Normal states of class A retain good U(5) symmetry and nd quantum number

• Weak normal-intruder mixing (small b2 )

• U(5)-PDS-CM: good description of empirical data 

A. Leviatan, N. Gavrielov, J.E. Garcia Ramos and P. Van Isacker,  
Phys. Rev. C 98, 031302(R)  (2018)



Majority of normal states (class A) are pure wrt U(5) (> 97%) 
Weak normal-intruder mixing

03(1731):   (0.9%   nd = 2) ,  (94% nd = 3) ,    (5.1% intruder)
04(2079):   (79.8% nd = 2) ,  (2%   nd = 3),     (18% intruder)
25(2356):   (1.2%   nd = 3) ,  (95.8% nd = 4) , (2.9% intruder) 

nd = 2
nd = 3
nd = 3

U(5)-PDS-CM U(5)-DS

nd = τ



E2 transitions in 110Cd

B(E2; 03 → 21)   <  7.9              0.25

[W.u.]                EXP U(5)-PDS-CM

B(E2; 25 → 41)   <  5                 0.19

B(E2; 25 → 22)   < 0.7+0.5
-0.6 0.12



Normal states: U(5)-PDS   good nd for class A states
Intruder states: SO(6)         “good” σ
Vmix small

E-(β,γ) E+(β,γ) E+(β,γ=0) 

E-
(β,γ=0) 



Concluding Remarks

A symmetry-based approach

- A single number-conserving rotational invariant H; DS preserved in selected bands  
- Higher-order terms
- Solvable bands unmixed. Strong  band-mixing can destroy the PDS 

• Shape coexistence near shell closure

• Quantum phase transitions with multiple shapes

Single DS 
or PDS

Multiple 
PDSs

- G1 DS → G1 PDS
- Strong → weak normal-intruder mixing 
- G1 DS maintained in selected normal states and G2 DS in intruder states 

→

110Cd

[Gi = U(5), SU(3), SU(3), SO(6)]

N. Gavrielov (HU)
J.E. Garcia-Ramos (Huelva)
P. Van Isacker (GANIL)                                    



Thank you
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