

Is Lepton Universality Violated in B Decays?

Simone Bifani

University of Birmingham (UK)

CPPM Seminar – 29th January 2018

Quest for Physics Beyond SM

> Current state of affairs

Direct production
> simpler to interpret
> probes masses <E

Indirect production
> model-dependent interpretation
> probes very-high mases

No evidence of new heavy on-shell particles below ~2 TeV
 ... except for a very much Standard Model Higgs-like scalar at 125GeV

> Most of the unexpected anomalies have been neutralised by the additional statistics

... all but the anomalies in b-hadron decays

Simone Bifani

Flavour Anomalies

- Recent measurements of b-quark transitions manifest intriguing hints of Lepton Universality violation
 - » Tests with tree-mediated $b \rightarrow clv$ transitions
 - » Tests with loop-mediated $b \rightarrow sll$ transitions

> Lepton Universality

- » Electroweak couplings of leptons to gauge bosons are independent of their flavour (i.e. interactions of charged leptons differ only because of their different masses)
- » Not a fundamental symmetry of the Standard Model

> Today

- » How are these measurements made?
- » Are we seeing the first hints of physics Beyond the Standard Model?
- » When/how can we confirm or rule out these deviations?

Lepton Universality Tests in Other Sectors

Gauge Sector

> LEP [PR 427 (2006) 257, PR 532 (2013) 119]

$$\frac{\Gamma_{\mu\mu}}{\Gamma_{ee}} = \frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} = 1.0009 \pm 0.0028$$
$$\frac{\Gamma_{\tau\tau}}{\Gamma_{ee}} = \frac{B(Z \to \tau^+ \tau^-)}{B(Z \to e^+ e^-)} = 1.0019 \pm 0.0032$$

 $\mathcal{B}(W \to \mu \overline{\nu}_{\mu}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 0.993 \pm 0.019$ $\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 1.063 \pm 0.027$ $\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) = 1.070 \pm 0.026$ $2\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / (\mathcal{B}(W \to e \overline{\nu}_{e}) + \mathcal{B}(W \to \mu \overline{\nu}_{\mu})) = 1.066 \pm 0.025$

2.6s deviation

> LHC [PRD 85 (2012) 072004, JHEP 10 (2016) 030]

Simone Bifani

> PIENU [PRL 115 (2015) 071801]

$$R_{e/\mu} = \Gamma(\pi \to e\nu(\gamma))/\Gamma(\pi \to \mu\nu(\gamma))$$

- SM = (1.2352 ± 0.0002) × 10⁻⁴
- » Exp = $(1.2344 \pm 0.0023_{stat} \pm 0.0019_{syst}) \times 10^{-4}$
- > NA62 [PLB 719 (2013) 326]

$$R_K = \Gamma(K_{e2}) / \Gamma(K_{\mu 2})$$

- SM = (2.477 ± 0.001) × 10⁻⁵
- » Exp = $(2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$

Simone Bifani

Charmonia

> CLEO [PRL 98 (2007) 98.052002]

$$R_{ll'}(\Upsilon(\mathbf{n}S)) = \frac{\Gamma_{\Upsilon(\mathbf{n}S) \to ll}}{\Gamma_{\Upsilon(\mathbf{n}S) \to l'l'}}$$

> BABAR [PRL 104 (2010) 191801]

$$\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$$

» SM ~ 0.992

» Exp = 1.005 ± 0.013_{stat} ± 0.022_{syst}

Lepton Universality Tests in B Decays

B-Factories

> PEP-II and KEKB

- » e⁺e⁻ collisions at Y(4S) resonance (BB threshold)
- » Small cross-section σ_{BB} ~ 10^{-9} b
- » Initial state known (e⁺e⁻ collision energy)
- » Very clean BB production (no underlying event)
- » BaBar and Belle hermetic detectors
- » Large luminosity collected (~1.1 ab^{-1} at Y(4S))

On resonance: Y(4S): 424 fb⁻¹, 471 M Y(3S): 28 fb⁻¹, 122 M Y(2S): 14 fb⁻¹, 99 M Off resonance: 48 fb⁻¹

Simone Bifani

Hadron Collider

> LHC

- » pp collisions at 7-14 TeV
- » Huge cross-section σ_{bb} ~0.3-0.6 × 10⁻³ b but $\sigma_{inelastic}$ ~200 σ_{bb}
- » Initial state unknown (partons)
- » Very boosted b-hadrons
- » bb production peaks at small angle

 \rightarrow LHCb instrumented forward (2< η <5)

Simone Bifani

Detector Performance

> Key detector performance for Lepton Universality tests

» μ ID (misID) efficiency

- BaBar ~75 (1-2) %
- Belle ~90 (2) %
- LHCb >95 (1-2) %

» e ID (misID) efficiency

- BaBar&Belle ~90 (0.2-0.3) %
- LHCb ~90 (3-5) %

» Trigger efficiency

- BaBar&Belle ~100 %
- LHCb

~100 % >90 (60-70) % for μ(e)

Simone Bifani

Lepton Universality Tests in Trees

Lepton Universality in Trees

> Flavour-Changing Charged-Current quark-transitions

- > BSM physics can couple to 3rd generation
- Sensitive to charged Higgs, W' boson and Leptoquarks

Measure τ/e or τ/μ
 » Hadronic uncertainties largely cancel
 » Precise predictions (1-3%)

$$\begin{aligned} \mathscr{R}_{D}^{SM} &= \frac{\mathscr{B}(\bar{B} \to D\tau^{-} \bar{\nu}_{\tau})}{\mathscr{B}(\bar{B} \to De^{-} \bar{\nu}_{e})} = 0.300 \pm 0.008 \\ \mathscr{R}_{D^{*}}^{SM} &= \frac{\mathscr{B}(\bar{B} \to D^{*} \tau^{-} \bar{\nu}_{\tau})}{\mathscr{B}(\bar{B} \to D^{*} e^{-} \bar{\nu}_{e})} = 0.252 \pm 0.003 \end{aligned}$$

*not unity because of phase-space effects due to different lepton masses

Simone Bifani

- > Heaviest lepton in the SM
 - » m_τ ~1.78 GeV (~15x m_µ)
 - » lifetime ~0.3 ps
- > Large variety of decay modes
- > One or more neutrinos in the final state

B⁻→D^o[K⁻π⁺]τ⁻ν with τ⁻→e⁻νν B⁺→5 charged tracks

 $\overline{B}{}^{o} \rightarrow D^{*+}\tau^{-}\nu \text{ with } \tau^{-} \rightarrow \mu^{-}\nu\nu$ and $D^{*+} \rightarrow D^{o}[K^{-}\pi^{+}]\pi^{+}$

Simone Bifani

- > Hadronic tag of the other B [PRD 88 (2013) 072012]
- > Technique
 - » Beam constraints to isolate signal
 - » Tau reconstructed via $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$
 - » Charged and neutral hadrons and $D \rightarrow 2,3h$
 - » 2D fit to m_{miss}^2 and p_1

- > Precision of ~16(9)% on R(D(*))
- > Systematic uncertainties ~10(5)% mainly from shapes

Simone Bifani

R(D^(*)) – Belle

- > Hadronic [PRD 92 (2015) 072014] and semileptonic [PRD 94 (2016) 072007] tag of the other B
- > Technique
 - » Beam constraints to isolate signal
 - » Tau reconstructed via $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$
 - » Charged and neutral hadrons and $D \rightarrow 2,3h$
 - » 2D fit to m²_{miss} and kinematic NN output

> Precision of
» ~18(14)% on R(D^(*)) with h-tag
» ~11% on R(D*) with sl-tag

> Measured also R(D*) using $\tau \rightarrow h\nu$ with a precision of ~17% [PRL 118 (2017) 211801]

R(D*) – LHCb

- > Measurement thought not to be possible at LHCb
 - » No info on initial state and non-hermetic detector
- > Technique [PRL115 (2015) 111803]
 - » Tau reconstructed via $\tau \rightarrow \mu \nu \nu$
 - » Only charged hadrons $(D^{*+} \rightarrow D^{\circ}(K^{-}\pi^{+})\pi^{+})$
 - » Selection designed to not bias the $\mathsf{D}^{**}\mu$ system
 - » 3D fit to $(q^2, m^2_{miss}, E_{\mu}^*)$

 $R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$

- > Precision of ~12% using 3fb⁻¹
- > Dominant systematics due to size of simulated samples for templates

Simone Bifani

R(D*) – LHCb

- > Technique [arXiv:1708.08856]
 - » Tau reconstructed via $\tau \rightarrow 3\pi v$
 - » Only charged hadrons $(D^{*+} \rightarrow D^{\circ}(K^{-}\pi^{+})\pi^{+} \text{ and } \tau^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu)$
 - » Normalise to $B \rightarrow D^{*-}\pi^{+}\pi^{-}\pi^{-}$ and use $BR(B \rightarrow D^{*}\mu\nu)$ from B-factories
 - » Exploit τ lifetime to reduce part-reco background
 - » 3D fit to (q², τ decay time, BDT)

- > Precision of ~13% (~7% due to $BR(B \rightarrow D^* \mu v)$) using 3fb⁻¹
- > Dominant systematics due to size of simulated samples for templates

Simone Bifani

CPPM Seminar

10

 $q^2 \,[{\rm GeV}^2/c^4]$

R(D^(*)) – Global Picture

BaBar:

hadronic tag, leptonic τ

Belle:

- hadronic tag, leptonic τ
- semileptonic tag, leptonic τ

hadronic tag, hadronic τ

LHCb:

- leptonic τ (only muons)
- hadronic τ (3-prongs)

- > Combined significance of ~4σ
- > Results consistent using different experimental apparatuses
 - » B-factories with ee@10GeV and LHCb with pp@8TeV
- > Results consistent using different analysis techniques
 - » Expect systematics to be largely orthogonal

$R(J/\psi) - LHCb$

> Precision of ~35% using 3fb⁻¹
> Compatible with the SM at ~2σ

Simone Bifani

Lepton Universality Tests in Loops

Lepton Universality in Loops

> Flavour-Changing Neutral-Current quark-transitions

- > Only allowed at loop level in the SM
- > New Particles can
 - » Enhance/suppress decay rates
 - » Introduce new sources of CP violation
 - » Modify the angular distribution of the finalstate particles
- > Sensitive to Z' boson and Leptoquarks
- Measure μ/e (τ inaccessible at present)
 » Expected to be unity in SM
 » Hadronic uncertainties largely cancel

Simone Bifani

Theoretical Framework

> FCNC effective Hamiltonian described by Operator Product Expansion

» C_i (Wilson coefficients): perturbative, short-distance physics, sensitive to $E > \Lambda_{EW}$ » O_i (Operators): non-perturbative, long-distance physics, depend on hadronic FF

Decay	$C_{7}^{(\prime)}$	$C_{9}^{(\prime)}$	C ^(') ₁₀	$C_{S,P}^{(\prime)}$
$B ightarrow X_{ m s} \gamma$	Х			
$B ightarrow K^* \gamma$	Х			
$B ightarrow X_{ m s} \ell^+ \ell^-$	Х	Х	Х	
$B ightarrow K^{(*)} \ell^+ \ell^-$	Х	Х	Х	
$B_{s} ightarrow \mu^{+}\mu^{-}$			Х	Х

Simone Bifani

What Have We Done So Far?

> Extensive studies at LHCb in three main areas

1. Differential branching fractions

» Large hadronic uncertainties in theory predictions

2. Angular analyses

» Define observables with smaller theory uncertainties

3. Branching fraction ratios

» Large cancellation of hadronic uncertainties in theory predictions

Differential Branching Fractions Kick

> Results consistently lower than SM predictions

Simone Bifani

Angular Analyses

- > $B^{\circ} \rightarrow K^{* \circ}(K^{+}\pi^{-})\mu\mu$ provides an excellent laboratory
 - » System described by three angles and the di-lepton invariant mass squared
 - » Complex angular distribution with many observables sensitive to different types of BSM physics
 - » Can construct less form-factor dependent ratios of observables

Angular Analyses

- > BaBar and Belle data samples are clean but have limited statistics
 - » Even Belle-II is not expected to surpass LHCb
- > CMS and ATLAS have large samples but these events are hard to trigger, less clean and worse mass resolution
 - » Sensitivity not (yet) competitive with LHCb

Branching Fraction Ratios

- > Provides powerful tests of Lepton Universality
 - » Experimental systematics are reduced
 - » Largest residual theoretical uncertainty due to QED corrections (1-2%) [EPJC 76 (2016) 440]
- > Measure μ/e

» Expected to be unity in the SM

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

> Tests at B-factories are not very sensitive

> LHCb has much better sensitivity but electrons are challenging (e.g. trigger, bremsstrahlung, resolution, modelling)

 $\varepsilon_{reco}(B^{o} \rightarrow K^{*o}J/\psi(\mu\mu)) \sim 5 \times \varepsilon_{reco}(B^{o} \rightarrow K^{*o}J/\psi(ee))$

- > Trigger system split in hardware (Lo) and software (HLT) stages
- > Due to higher occupancy of the calorimeters compared to the muon stations, hardware thresholds on electron E_T are higher than on muon p_T (Lo Muon: p_T > 1.5-1.8 GeV)
- > To mitigate this effect, electron sample selected using 3 exclusive trigger categories
 - » **Lo Electron:** $E_T > 2.5-3.0 \text{ GeV}$
 - **» Lo Hadron:** $E_T > 3.5 \text{ GeV}$
 - » Lo TIS: triggers fired by other particles

Bremsstrahlung

 Electrons emit a large amount of bremsstrahlung that results in degraded momentum and mass resolutions

- > If emitted before the dipole magnet
 » Affects momentum measurement
 » Does not affect calorimeter PID
- > Recovery procedure in place to search for brem-like deposits in the calorimeter
 - » Limited efficiency but well reproduced in simulation
 - » Calorimeter resolution (1-2%) worse than spectrometer (~0.5%)

Simone Bifani

Resolution

> Pollution from partially-reconstructed decays in the electron sample

- » Decays of higher K resonances with one or more decay products in addition to a $K\pi$ pair that are not reconstructed
- » Decays with neutrinos

Simone Bifani

Modelling

- > Tuning of the simulation with tag-and-probe data-driven techniques
 - » Generated B kinematics and event multiplicity
 - » Trigger and Particle Identification response
 - » Data/MC reconstruction differences

> Control of the absolute efficiency scale tested via single ratio

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))} = 1.043 \pm 0.006 \pm 0.045$$

Compatible with unity and independent of the decay kinematics

> Further checks performed by measuring the ratios

$$\mathcal{R}_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0} \gamma (\to e^+ e^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))}$$

Compatible with the expectations

> Measurement performed as double ratio to $B \rightarrow K^{(*)}J/\psi(II)$ mode

Simone Bifani

R(K) – LHCb

> Test of LU with B⁺→K⁺II decays

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to K^+ J/\psi (\to e^+ e^-))}$$

- > One region of q²
 > Central [1.0-6.0] GeV²/c⁴
- > About 1200 (250) $B^+ \rightarrow K^+ \mu \mu$ ($B^+ \rightarrow K^+ ee$) candidates
- > Precision of ~13% using 3fb⁻¹
- Largest systematic uncertainty from trigger and mass modelling

 $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \,\pm 0.036 \,(\text{syst})$

> Compatibility with the SM at ~2.60

Simone Bifani

R(K*) – LHCb

> Test of LU with $B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})II$ decays

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

> Two regions of q²
 » Low [0.045-1.1] GeV²/c⁴
 » Central [1.1-6.0] GeV²/c⁴

- > About 290 (90) and 350 (110) $B^{0} \rightarrow K^{*0} \mu \mu (B^{0} \rightarrow K^{*0} ee)$ candidates at low- and central-q², respectively
- > Precision of ~17% using 3fb⁻¹
- Largest systematics from trigger and mass modelling

> Compatibility with the SM at 2.1-2.5σ

$R_{K^{*0}} = \langle$	$\int 0.66 {}^{+}_{-} {}^{0.11}_{0.07} (\text{stat}) \pm 0.03 (\text{syst})$	for $0.045 < q^2 < 1.1$	GeV^2/c^4
	$\left(0.69 + 0.01 \\ - 0.07 \\ (\text{stat}) \pm 0.05 \\ (\text{syst})\right)$	for 1.1 $ < q^2 < 6.0 $	GeV^2/c^4

Global Fits

> Several attempts by independent groups to interpret results by performing global fits to the data

- > Take into account O(100) observables from different experiments, including $b \rightarrow \mu\mu$, $b \rightarrow sll$ and $b \rightarrow s\gamma$ transitions
- Coherent pattern that requires an additional contribution wrt the SM to accommodate the data
- > Preference for BSM physics in C_9 with a significance of 3-5 σ

Controlling Charm Loops

> Or is this a problem with the understanding of contributions from charm loops?

Global fits in bins of q² indicate
 no dependence

 Measurement of interference between penguin and cc from data indicates this is small

Simone Bifani

Is it a Z', a Leptoquark or ...?

> Plethora of models to accommodate the flavour anomalies

> Direct searches provides complementary information to B decays

Simone Bifani

CPPM Seminar

LHCb

A Glimpse into the Future

Future Experiments

- > The Belle-II and LHCb Upgrade(s) experiments are best suited to the study of flavour physics in the next decade
- > Their complementary characteristics will provide unique opportunities to perform tests of Lepton Universality (and much more)
- The data collected will yield the world's largest sample of b-hadron decays and will boost measurements of their properties to an unparalleled precision

Belle-II

> Designed to study B mesons at the Y resonances

- > Second generation B-Factory which builds upon the Belle experience
- > Main data taking in 2019 with 40x increase in instantaneous luminosity wrt KEKB and collect ~50ab⁻¹ by 2025 (~50 × 10⁹ BB events)
- > Belle-II will dominate measurements of final states with missing energy, multiple photons and of inclusive decays

Simone Bifani

LHCb Upgrade(s)

> Designed to study heavy-flavour in pp collisions

- > Upgrade-I during LS2 to run at 5x larger instantaneous luminosity and collect ~50fb⁻¹ by 2029 (~90 × 10¹² bb pairs) [CERN-LHCC-2012-007]
- > EoI for Upgrade-II during LS4 to take full advantage of the flavour physics opportunities at the HL-LHC [CERN-LHCC-2017-003]

> LHCb can access all b-hadron species and will dominate measurements of final states with all charged particle

Simone Bifani

Future – R(D(*))

Measurement	SM	Current World	Current	Projected Uncertainty			7	
	prediction	Average	Uncertainty	Be	lle II		LHCb)
arXiv:1709.10308	<u>8</u>			$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab^{-1}}$	$8{\rm fb}^{-1}$	$22{\rm fb}^{-1}$	$50{\rm fb}^{-1}$
R(D)	(0.299 ± 0.003)	$(0.403 \pm 0.040 \pm 0.024)$	11.6%	5.6%	3.2%	-	-	-
$R(D^*)$	(0.257 ± 0.003)	$(0.310 \pm 0.015 \pm 0.008)$	5.5%	3.2%	2.2%	3.6%	2.1%	1.6%

*projected uncertainties not including improvements in detectors and algorithms

Simone Bifani

Future – R(K^(*))

Observable	e q^2 interval	Extrap	polations	Observable	q^2 interval	Measurement 3fb^{-1}	Ex 8 fb ⁻¹	trapolat 22 fb^{-1}	ions 50 fb-1
arXiv:1709.	<u>10308</u>	$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$			515	010	2210	0010
P(K)	$10 < a^2 < 60 \mathrm{GeV}^2$	110%	3.6%	R(K)	$1.0 < q^2 < 6.0 { m GeV}^2$	$0.745^{+0.090}_{-0.074} \pm 0.036$	0.046	0.025	0.016
$\mathbf{n}(\mathbf{K})$	$1.0 < q^{-} < 0.0 \text{ GeV}$	1170	3.0%	R(K)	$15.0 < q^2 < 22.0 \mathrm{GeV^2}$	-	0.043	0.023	0.015
R(K)	$q^2 > 14.4 \text{GeV}^2$	12%	3.6%	$R(K^*)$	$0.045 < q^2 < 1.1 \mathrm{GeV}^2$	$0.66^{+0.11}_{-0.07}\pm0.03$	0.048	0.026	0.017
$R(K^*)$	$1.1 < q^2 < 6.0 \mathrm{GeV}^2$	10%	3.2%	$R(K^*)$	$1.1 < q^2 < 6.0 {\rm GeV^2}$	$0.69^{+0.11}_{-0.07}\pm0.05$	0.053	0.028	0.019
$R(K^*)$	$q^2 > 14.4 {\rm GeV}^2$	9.2%	2.8%	$R(K^*)$	$15.0 < q^2 < 19.0 {\rm GeV^2}$	-	0.061	0.033	0.021

> But also $R(\phi)$, $R(\Lambda^{(*)})$ and $b \rightarrow dll$ transitions

Summary

> Interesting set of anomalies observed in b-hadron decays

> Tree-mediated b—>clv transitions

- » Challenging analyses involving neutrinos
- » Coherent effects from different experiments and with different techniques
- > Loop-mediated b—sll transitions
 - » Challenging analyses involving electrons (LHCb)
 - » Coherent effects with deviations seen in $b \rightarrow s \mu \mu$

> If taken together this is probably the largest "coherent" set of BSM effects in the present data

> No unambiguous LU violation yet but we will know soon

- » New/update analyses with LHCb Run2 data expected soon
- » Belle-II and LHCb Upgrade(s) will reach unprecedented sensitivity