DE LA RECHERCHE À L'INDUSTRIE #### **SUMMARY** - Fundamental physics detectors - Muon tomography - WatTo, experiment for demonstration - ScanPyramids: preparation and discoveries - Other applications of the muon tomography #### INTRODUCTION: MICROMEGAS DETECTOR - Gas detector invented for physics experiments at Irfu (90's) - *Micromegas bulk* technology (2005): - robust, high area possible - easily made in company (printed circuit board processes) - resistive strips: use for spark removal and 2D readout - Excellent performances for detection in nuclear and particle physics - spatial resolution < 100 µm - time resolution < 10 ns - High rate capability - Interest for societal applications - technological transfer succeed - relatively low cost # GASEOUS DETECTORS WITH 2D READOUT (CEA) #### **COSMIC BENCH FOR DETECTOR STUDY** - Cosmic bench used to characterize physics experiment detectors - Free, in house and without beam schedule Optical fibre to DAQ PC > HV power supply > > Trigger Logic ## **EXAMPLE OF DETECTOR IN HADRONIC EXPERIMENT** - 4 m² of Micromegas detectors installed in 2017 (last month) in 5T magnet - Forward detectors: - 6x430 mm diameter dimension - high rate (30 MHz) supported by resistive strips divided in 2 zones inner/outer - cylindrical *Barrel* detectors - 3x6 layers in 10 cm space for low momentum particle (light detectors) Barrel Forward ### PHYSICS DETECTOR CHARACTERIZATION #### Efficiency vs. HV #### 2D efficiency #### **MUON TOMOGRAPHY** Cosmic muons produced by cascade of reactions induced by cosmic rays in the upper atmosphere - Flux: $\sim 150/\text{m}^2/\text{s} \sim \cos^2\theta$ (maximum in zenith direction) - Mean energy: 4 GeV - Life-time: 2 μs - Natural, free and harmless radiation - Straight propagation (in mean) Bethe-Bloch ionization stopping power $$-\frac{dE}{ds} = \rho q^2 \frac{N_A e^4}{4\pi \epsilon_0^2 m_e c^2} \frac{Z}{A} \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 - \frac{\delta}{2} \right)$$ $$\sigma_{\theta} = \frac{19.2 MeV}{\beta pc} \sqrt{\frac{\rho s}{X_0}} \left(1 + 0.038 \ln \frac{\rho s}{X_0} \right)$$ - Radiation length $$X_0 = 716.4 g cm^{-2} \frac{A}{Z(Z+1) \ln \frac{287}{\sqrt{Z}}}$$ | Material | Thickness | θ (°) | P _{absorption} | |----------|-----------|-------|-------------------------| | Air | 100 m | 0.094 | 0.78% | | Lead | 10 cm | 1.01 | 2.9% | | Water | 1 m | 0.35 | 4.2% | | Ground | 100 m | | 99% | #### **MUON TOMOGRAPHY** - Muons can be stopped (decay) or their trajectory can be changed - Two modes of muon tomography can be extracted from muon flux - Absorption muography - Deviation muography - High potential of societal applications in many fields: - volcanology, archaeology - mineral exploration, civil engineering, ... # FIRST DEMONSTRATOR: WATTO (WATER TOWER) October 13th, 2014 May 11th, 2015 #### **TECHNOLOGIC CHOICES AND INNOVATION** - Unusual specifications (outdoor, weight, power consumption, autonomy) - Non flammable gas (safety): Ar-Iso-CF4 (95:23) - Very low flow rate (~1L/h) → months of data taking - Dream-based electronics made in Irfu: 1 board FEU of 8 ASICS - 1 Dream per coordinate - → Low capacitance micro-coax Hitachi cable (Clas12) - Design for large capacitance detector (MultiGen~1-2nF) - Self trigger mode, coincidence between 8 plans - Nano-PC (Hummingboard from Solid-Run) - 4-core ARM at 1GHz with Linux OS - Software to control and monitor HV, electronics - Transfer data to analysis PC - HV board made in Irfu - Running and monitoring - Using CAEN DC-DC LV-HV converter - Power supply & Network - → Power in 230V and internet wired connection - → Full autonomy tested - Power at 12V using battery and solar panels - 3G communication ## **WATTO TELESCOPE** ## **INTEGRATION AND TESTS IN LAB** HV+ nano PC + Clas12 electronics board in a box ### TWO CONFIGURATIONS OF DATA TAKING ## RESULTS (1/2) #### Static Muography: Same size of a scintillator telescope 2000 [**w**] ₁₅ 1800 1600 10 1400 1200 1000 8000 6000 -10 4000 -15 2000 15 20 X [m] #### How to read a muography: - Each pixel is a number (or a flux) of reconstructed muons in the corresponding direction - Light colour \rightarrow more muon \rightarrow less absorption \rightarrow less matter - Dark colour → less muons → more absorption → more matter - → First muography of a recognizable building ## **RESULTS (2/2)** ### • Dynamic Muography: Integration time: 4 days each (position 2) **Environmental conditions** (noise, T&P effects, etc.) 30 W on solar panel Muon Tomography of the Great Pyramid #### WATTO→MISSION SCANPYRAMIDS - September 2015 end of WatTo experiment ... - ... announcement of ScanPyramids on October 25th - → Email to Mehdi Tayoubi on October 26th - 1st meeting mid-December in Paris - Official announcement CEA participation April 2016 - 1st telescope installation in Egypt May 2016 - → 2nd telescope installation in January 2017 Mehdi Tayoubi President & co-founder Innovation Strategist Hany Helal Vice-president & co-founder Professor, Faculty of Engineering, Cairo University Former Minister of Higher Education & Scientific Research UNIVERSITY ## SCINTILLATION (KEK) - Plastic Scintillators: - Well-known technology - robust - large area - Industrial production Read by MPPC (Multi-Pixel Photon Counter) X_1 Y_2 X_2 ## NUCLEAR EMULSION (NOGOYA UNIV.) - Photographic plate to record tracks from charged particles (30's) - Easy to operate - Large area - No power - Micrometric spatial resolution #### WATTO→MISSION SCANPYRAMIDS - Telescopes : $1 \rightarrow 3$ - Chassis → valise - Detection plane: prototype (Cern) → serial (Elvia-PCB company) - Building period: 9 months → 3 months - Weight: $\sim 200 \text{ kg} \rightarrow \sim 130 \text{ kg}$ - Detector high voltage: independent of temperature → f(T) - Data: raw → raw + pre-processing ### WATTO→MISSION SCANPYRAMIDS - New telescope: - transportable and easily functional - 4 × 2D resistive Micromegas (version 2) - 3G connection for operation, monitoring and retrieve pre-processed data ### **TELESCOPE INTEGRATION AND CONSTRUCTION** Detection plane integration in clean room Tests in outdoor conditions Alhazen (n°1) Alvarez (n°2) Brahic (n°3) • 3 telescope assembled and shipped to Egypt measurement campaigns ## **GIZA PLATEAU INSTALLATION** ### **MEASUREMENT CAMPAIGNS** • 3 missions between 2016 & 2017 1st mission (jun-aug 2016) 2nd mission (jan-april 2017) 3rd mission 3 (may-jul 2017) #### **MEASUREMENT CAMPAIGNS** • 3 missions between 2016 & 2017 1st mission (jun-aug 2016) 2nd mission (jan-april 2017) 3rd mission 3 (may-jul 2017) • Statistics: around 200 millions muons! | Telescope | Mission1 | Mission2 | Mission3 | |-----------|---------------|---------------|---------------| | Alhazen | 29,0 millions | 34,1 millions | 16,6 millions | | Brahic | 24,6 millions | 25,6 millions | 16,9 millions | | Alvarez | 18,3 millions | 28,0 millions | X | | Total | 71,9 millions | 87,7 millions | 33,5 millions | #### **DATA TAKING** #### Relatively smooth be fore after + *issues with 3G/4G* + ... Temperature variations (gas & electronics & mechanics) (instruments checked at Saclay between 2°C and 55°C) ### **DATA TAKING** • Successive improvements of the instruments #### Signal stability Monitoring of environmental condictions Full, online analysis on the nano-PC ### **ANALYSIS** • Necessity to adjust photo and muo for comparison with 3D model • Requires edge detection (image filtering) ### **RESULTS - 2016** • October 2016: discoveries of 2 voids in the pyramid Question for egyptologists: what is the purpose of these voids? #### **RESULTS** Early 2017: 1st results from Nagoya emulsion in Queen's Chamber... Significant muon excess close to the Grand Galery \Rightarrow void Anomalies appearing also on KEK scintillator (Queen's Chamber), and on CEA telescope (North face) - 3D model suggests that all these anomalies point to the same direction - Dedicated measurement campaign started - Queen's Chamber: new emulsion from Nagoya and move of the KEK scintillator - *Outside:* move of 2 telescopes in front of the North face Chevrons ## RESULTS (FROM NATURE PAPER) All the measurements confirm a large void above the Grand Gallery ### **SCANPYRAMIDS BIG VOID** - Remarkable features of the ScanPyramids Big-Void: - Within the same plane as all other knwon (big) structures - Large under-density, only at this place - Volume estimate: several hundreds of m3 - Lenght: > 30 m - Inclined or horizontal... - ⇒ More measurements needed! ## **NEXT STEP(S)** - Electronic management of the gas flow with new HVPS-v2 card - Test in progress - Proposition of a mission inside the pyramid to better observe the Big Void - Goal: < 1 m³ in 4 months - Could take place in early Spring 2018 - Longer term: sealed, bigger telescopes and TPC - Vacuum chamber at Saclay, test started (a la Harpo!) ## **CONCLUSION (BEYOND BIG VOID...)** MPGD robust enough for extreme condition applications in spite of gas Probably the best technology for precise muography | | Nuclear emulsion
Nagoya University | Hodoscopes
KEK | Gas detectors
CEA | |---------------------|---------------------------------------|-------------------|----------------------| | Angular Resolution | 2-14 mrad | 7-10 mrad | 0.8 - 4 mrad | | Angular Acceptance | 45 degrees | 34 - 45 degrees | 45 degrees | | Active area | 30 cm x 25 cm / unit: | 1.2 m x 1.2 m | 50 cm x 50 cm | | (for this analysis) | 0.75 m x 0.6 m (NE1) | | | | Position Resolution | 0.9 m x 0.5 m (NE2)
1 μm | 10 mm | 400 μm | | Height | 0.2 mm | 1-1.5 m | 60 cm | | Power requirement | No | Yes (300W) | Yes (35W) | | Data taking | Need development | Real time | Real time | - Key ingredients for large scale, societal or industrial applications - Manufacturer (ELVIA) - Potential integrator (Iris Instruments) - Media coverage (advertisement) ## **CONCLUSION (BEYOND PYRAMID...)** • Deep imaging: many more applications « high def » muography: cano now recognize structures and even small objects Civil engineering Dismantling, nuclear waste Bast furnace (muon) metrology Volcanology # **MUOGRAPHY (BEYOND IMAGINATION...)** Painting Photography • Muography?