Advanced GW detectors design sensitivity at the time of LSST

- Network :
 - ~2022 : 4 interferometers (2 LIGO, Virgo and KAGRA) at design.
 - ~ 2024 : a fifth one : LIGO India
- Sensitivity : likely an heterogen network. Maximal Binary Neutron Star range (horizon/2.6) : ~200 Mpc. > Gpc for Binary Black-Holes.

Table 1 Plausible target detector sensitivities. The different phases match those in Figure 1. We quote the range, the average distance to which a signal could be detected, for a $1.4 M_{\odot} + 1.4 M_{\odot}$ binary neutron star (BNS) system and a $30 M_{\odot} + 30 M_{\odot}$ binary black hole (BBH) system.

	LIGO		Vii	rgo	KAGRA	
	BNS	BBH	BNS	BBH	BNS	BBH
	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc
Early	40 - 80	415-775	20-65	220-615	8-25	80-250
Mid	80 - 120	775-1110	65 - 85	615-790	25 - 40	250 - 405
Late	120 - 170	1110-1490	65-115	610-1030	40 - 140	405-1270
Design	190	1640	125	1130	140	1270

« Prospects for Observing and Localizing Gravitational-WaveTransients with Advanced LIGO, Advanced Virgo and KAGRA « Abbott, et al [gr-qc/1304.0670]

LIGO Virgo and KAGRA sensitivity evolution

GW network detectors observing strategy

- Follow-up mode :
 - The network will follow-up all LSST triggers associated to a potential source of GWs : Core collapse supernova (CCSN), GRB, magnetars, Soft Gamma Ray bursts, kilonova, ... (Delta T0 < 1 jour)
 - 4/5 interferometers network : full sky almost covered at any time.
 - The GW detectors horizon for each of these sources will be very different :
 - BNS range : 200 Mpc
 - CCSN range : ~10 kpc (standard model of emission) \rightarrow 20 Mpc (exotic models)
 - Magnetars : ~100 kpc
 - Sub-threshold analyzes (already performed with Fermi-GBM triggers).
- Alerts mode :
 - LIGO-Virgo will generate Open Public Alerts (will start during O3 in 2019)
 - OPA rate ? Not yet defined for O3.
 - OPA content ? Not yet defined for O3.
 - OPA media : Galactic Circular Network likely for O3 (email, téléphone...)

Advanced GW detectors sky localization performance

4 ifos

5 ifor

- Can use the BNS case as a proxy.
- Key factor : the number of interferometers and their localization in the network :
 - Median 90 % credible region : 9-12 deg² with 5 ifos (2024)

						1 1105	.7 110/0
Epoch			2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run duration			4 months	9 months	12 months	(per year)	(per year)
	st range/Mpc	LIGO	40 - 60	60 - 75	75 – 90	105	105
Expected burs		Virgo	_	20 - 40	40 - 50	40 - 70	80
-	2 1	KAGRA	_	_	_	_	100
		LIGO	40 - 80	80 - 120	120 - 170	190	190
Expected BNS	S range/Mpc	Virgo	_	20 - 65	65-85	65 - 115	125
		KAGRA	_	—	—	_	140
Achieved BNS range/Mpc		LIGO	60-80	60 - 100	_	_	
		Virgo	_	25 - 30	_	_	_
		KAGRA	_	_		_	
Estimated BNS detections			0.05-1	0.2-4.5	1-50	4-80	11 - 180
Actual BNS detections			0	1		_	
	% within	5 deg ²	< 1	1-5	1-4	3-7	23 - 30
90% CR		20 deg^2	< 1	7 - 14	12 - 21	14 - 22	65 - 73
	median/deg ²		460-530	230-320	120 - 180	110 - 180	9-12

Factor 10 of improvement with 5 ifos (LIGO-India)

Joint observation

- GW detectors interested by source identification information Ex : type Ib/Ic supernova t_zero and prompt light curve
- GW triggers information ; we provide :
 - If binary system, probability the source contains a neutron star or not
 - Sky map : 90 % CR can still be large at the time of LSST (100 deg²). Can also be lower than 10deg². Case by case TO decision depending on GW source localization accuracy ?
 - more details very soon in gr-qc/1304.0670:v2
 - will be important to have discussions before LSST starts