HSC Astrometry (and photometry)

Pierre Astier, Marc Betoule,
Nicolas Regnault, Clare Saunders
LPNHE / IN2P3 / CNRS, Universités Paris 6&7.

**UPMC* Sorbonne Université*

LSST Marseille (Jan 2018)

What is astrometry?

- In principle, anything that has to do with measuring positions of astrophysical objects
- In practice, defining the reference frame is now provided by GAIA
- LSST will improve over GAIA only for faint (m>~20) objects.
- We are then concerned about relative astrometry
- It boils down to mapping position measurements in sensors coordinates on a global reference frame, possibly using objects not in the reference catalog.

What for?

- In the context of "repeated imaging", relating positions measured in different images is mandatory:
 - Prior to co-adding (!)
 - Prior to subtracting
 - For all sorts of measurements carried out on individual images, e.g. lightcurve extraction, shape measurement, ...

Astrometric residuals for photometry and shape measurement

• Forced photometry: astrometric offsets cause a photometric bias:

 $E[\hat{f}] = f \left(1 - \frac{(\delta X)^2}{R_{PSF}^2} \right)$

• Second moments are sensitive to the position:

Second moments matrix
$$M = \frac{\int (X - X_0)(X - X_0)^T \ W(X - X_0) \ I(X) \ d^2X}{\int \ W(X - X_0) \ I(X) \ d^2X}$$
centroid Some weight image function

In both cases, the measured quantity depends quadratically on position. Hence, astrometric residuals do not average out.

Astrometric solution

- The goal is to map the pixel space of every image to some common frame (e.g. sidereal)
- Much lighter than determining all image-toimage mappings (n (n+1)/2)
- Mappings to some undistorted space (e.g. tangent plane) allows one to remove the effects of optical distortions (important for shape measurements)

External catalog constraints

Fitting the (distorted) WCS

- Means fitting the mapping from pixel coordinates to e.g. tangent plane.
- It is less trivial than it seems, because we are fitting polynomials.
- One *has* to fit in "reduced" coordinates, and reexpress the resulting polynomial.
- Best linear system solving methods:
 - SVD on the Jacobian (and check for degeneracies).
 - LDL^T on the Hessian (rather than LL^T, i.e. Cholesky)

Combinatorial matching: HSC

- HSC is challenging for combinatorial astrometric matching, because of huge optical distortions.
- We have to rely on an "instrument model", in order to project all catalogs from an exposure on some "undistorted" plane.
- A successful recipe to get this instrument model:
 - Find a set of exposures where each CCD of the mosaic was successfully matched (stand-alone) at least once.
 - Run the simultaneous astrometric fit on those matched images.
 - Use the output instrument model to combinatorial match whole exposures. This works(!)
 - Rerun the simultaneous astrometry on the whole sample

Three implementations of the simultaneous fitter

- SCAMP (Emmanuel Bertin 2008?)
 - The reference and the largest user base.
- WcsFit (Garry Bernstein, 2016)
 - Developed to fit a detailed instrument model for DECam.
- Jointcal (LSST-DM & co, ~2015-)
 - Just entered into the DM stack.

Jointcal (1)

- Developed for DM, from a precursor written for SNLS ("gastro", still used on HSC).
- Fits both mappings and common objects positions, possibly using reference objects:

$$\chi^{2} = \sum_{\gamma,i} [M_{\gamma}(X_{\gamma,i}) - P_{\gamma}(F_{k})]^{T} W_{\gamma,i} [M_{\gamma}(X_{\gamma,i}) - P_{\gamma}(F_{k})]$$
 (meas. terms)
+
$$\sum_{j} [P(F_{j}) - P(R_{j})]^{T} W_{j} [P(F_{j}) - P(R_{j})]$$
 (ref. terms)

- Relies on sparse linear algebra for expressing and solving the system, using the LDL^T factorization of *cholmod*, using its "factorization update" capability (for outlier removal).
- The fitted model is abstract for the fitter.

Jointcal (2)

- So far, the code only contains two models:
 - Images are mapped independently $T_{expo,CCD}(X)$.
 - Images are mapped as $T_{expo}(T_{CCD})(X)$ (ConstrainedModel)
 - T_{expo} = Identity for one exposure.
 - In both instances mappings are polynomials.
- Results that follow come from reductions of HSC data on Cosmos. We^(*) have been only using the ConstrainedModel (very similar to what SCAMP does). Uses Gaussian-Weighted positions.

Night 57402, z band.

17 exposures on Cosmos

- ~400 s of wall time (1 core)
- 509 k 2d-measurements, 138 k parameters
- Computing derivatives: 1s
- "squaring": 5 s
- Factorize-solve : 6 s
- Computing uncertainties 12 s P. Astier, LSST Marseille (2018) 12

All residuals (m<~20)

Residuals per exposure As a function of position In the focal plane

Night 57841, z band. 11 exposures.

All residuals (m<~20)

Residuals per exposure

Source of these residual patterns

- Their variability from exposure to exposure points towards the atmosphere
- This kind of pattern is expected from high altitude refraction index variations.
- Then, the displacements are the gradient of a scalar field. G. Bernstein checks that.
- Getting rid of those residuals at scales > a few arcmin, means several hundred parameters per exposure. This is a lot.

Our reduction strategy for the Subaru SN program

- Fit each night/band separately, using Gaia as a reference. We only use the output catalog.
- Average output catalogs from different epochs, detecting and fitting proper motions.
- Redo the above steps after removal of moving stars from the Gaia catalog (temporary...).
- Refit separately all WCS's, using the (average) catalog at the date of observation.
 - Accomodates atmospheric turbulence (20 parameters/chip) and proper motions.

Residuals between epochs

Proper motions

Baseline: $\sim 2 + \text{years}$

Residuals between bands: i vs z

Residual: ~ 5 mas rms

Proper motions: i vs z

Photometric uniformity (1)

- Flat-fielded images do not provide uniform photometry:
 - Plate scale (pixel size) variations affect flat-fields
 - Vignetting is not accurately mapped by dome flats
 - Flat-fields contain ghosts due to the corrector.
 - Band-passes may vary with position.

–

 → All images should be rescaled by a positiondependent function prior to stacking (or subtraction).

Photometric uniformity (2)

• Model:

- Instrumental distortion (on top of the astrometric Jacobian)
- One distortion per visit.
- Model expressed in mags: totally linear.

• Parameters:

- Distortion parameters.
- Magnitude of stars.

• Constraint:

- External catalog: D2 field from SNLS (smaller P. Astier, LSST Marseille (2018) LSST Ma

Residuals

Average offset per chip (w.r.t dome flats)

To Be Done

- Fit several instrumental configurations at the same time.
- Detect and fit proper motions within jointcal
- Accommodate reference catalogs with (accurate) proper motions.
- Switch the photometric fit to mags?

•

More slides

Odd PSF terms

Odd PSF terms

Astrometric residuals
To the night average

Exposures with poor residuals (and large 3rd moments)

Jointcal status (1)

Diff. Atm. Refraction	-	One parameter per Band. What about HSC ???
Atm. Refraction Flexure of the corrector	>	Per exposure Mosaic-wide anamorphism
Atmospheric turbulence	-	?? per exposure
Optical distortions	-	Per "run" (TBD)/band CCD → tang. plane mapping
Mechanics of the mosaic	>	
Tree rings		Fixed after
Side shifts	-	determination from a specific
Chromatic aberrations —	-	from a specific Fitter (to be done)

Jointcal status/future (2)

- Any layer added to the model should come with a scheme to lift the added degeneracies.
- For some reason (guiding?), odd PSF components probably compromise the astrometric solution.
- Atmospheric turbulence requires a lot of parameters per exposure to be modeled. Some sort of post-processing would be welcome.
- Depending on the fit size, some parallelism could be needed.
- Proper motions,

HSC: effect of PSF skewness

• Position estimation: SDSS-like coordinates, i.e Gaussian fit.

Residual(rx) vs mag, visit 19712 (i-band)

- The average residual depends on how extended the object is, and hence on magnitude.
- The skewness of stars is consistent across the mosaic.
- Current fix: exclude skewed-PSF exposures from stacking.
- Is there a general way to measure positions, accounting for PSF skewness?

Why do we care about positions when measuring fluxes?

- When measuring the light-curve of a point source there is a benefit at using the best possible (common) position estimator.
- This requires to map the coordinate systems of the involved images one on the other.

However....

- If δX is due to inaccuracies of image-to-image mappings (i.e. the floor of astrometric residuals)
- The flux bias vanishes in flux ratios
- which are actually used when considering the photometric calibration phase.
- So, the astrometric accuracy floor is not a first order issue when measuring lightcurves.

Why do we care about positions when measuring shapes?

$$M = \frac{\int (X - X_0)(X - X_0)^T \ W(X - X_0) \ I(X) \ d^2X}{\int \ W(X - X_0) \ I(X) \ d^2X}$$
 Second moments matrix
$$\text{Some weight function}$$
 image

Again, a shift of X_0 will alter M, independently of the sign of the shift \rightarrow the X_0 uncertainty causes a bias of M.

But this time, both the statistical (shot noise) and systematic (astrometric floor) contributions remain, because of the absence of a "calibration".

Various steps towards the astrometric solution

- Initial match (not part of the fitter but worth mentioning rapidly)
- Reading/filtering the catalogs
- Association (cross-id)
- Fit, iterations, outlier removal
 - Possibly re-associate
- Output : average catalog, WCS's, diagnostic ntuples, plots....

Initial combinatorial match

- Problem: matching a "reference catalog" to the one of an image.
- 4-parameter space: e.g. 2 offsets, rotation, scale.
- In practice, scale is often known to < 1% rotation angle to $< 1^{\circ}$, location on the sky to < 1'. But not always.
- There is a handful of good algorithms:
 - See e.g. Scamp doc. and astro-ph/9907229, astrometry.net
- All work properly, provided the two catalogs overlap enough (!).
- The robustness of an algorithm primarily depends on how many times the right match could be found.

SCAMP(1)

$$\chi^{2} = \sum_{s} \sum_{a} \sum_{b>a} w_{s,a,b} \| \boldsymbol{\xi}_{a}(\boldsymbol{x}_{s,a}) - \boldsymbol{\xi}_{b}(\boldsymbol{x}_{s,b}) \|^{2},$$
(13)

where $w_{s,a,b}$ is the non-zero weight for the pair of detections in fields a and b related to source s:

$$w_{s,a,b} = \frac{1}{\sigma_{s,a}^2 + \sigma_{s,b}^2}. (14)$$

 $\sigma_{s,f}$ is the positional uncertainty for source s in field f.

- Scamp minimizes the difference between mapped coordinates of measurement pairs.
- This is not exactly a maximum likelihood.

SCAMP (2)

- The default fitted model combines an instrument-specific mapping and an exposure anamorphism (atmosphere+...)
- Scamp incorporates the mechanics for combinatorial matching (possibly at the array level, using an embedded instrument layout).
- Can handle dozens of different reference catalogs.
- Parallaxes and proper motions (fitted separately...)
- Outputs the "average" catalog and WCS fits headers.
- Also outputs a lot of diagnostic plots.
- Any contender should provide at least these functionalities....

WcsFit (1703.01679)

- Written by G. Bernstein to finely map the instrumental distortions of Decam, from dithered exposures of dense stellar fields.
- Actually fits positions of common objects.
- Does not rely on sparse linear algebra, thanks to a trick: Position of sources

treated as the

measurements

$$\chi^{2} \approx \chi^{2}(\boldsymbol{\pi}_{0}) + 2\mathbf{b} \cdot \Delta \boldsymbol{\pi} + \Delta \boldsymbol{\pi} \cdot \mathbf{A} \cdot \Delta \boldsymbol{\pi},$$
 average of transformed
$$b_{\mu} \equiv \frac{1}{2} \frac{\partial \chi^{2}}{\partial \pi_{\mu}} = \sum_{i} w_{i} \left(\mathbf{x}^{w}(\mathbf{x}_{i}^{p}, \boldsymbol{\pi}_{0}) - \bar{\mathbf{x}}_{\alpha_{i}}\right) \cdot \left(\frac{\partial \mathbf{x}^{w}(\mathbf{x}_{i}^{p}, \boldsymbol{\pi})}{\partial \pi_{\mu}} - \frac{\partial \bar{\mathbf{x}}_{\alpha_{i}}}{\partial \pi_{\mu}}\right)$$
 measurement
$$A_{\mu\nu} \equiv \left(\frac{\partial \mathbf{x}^{w}(\mathbf{x}_{i}^{p}, \boldsymbol{\pi})}{\partial \pi_{\mu}} - \frac{\partial \bar{\mathbf{x}}_{\alpha_{i}}}{\partial \pi_{\mu}}\right) \cdot \left(\frac{\partial \mathbf{x}^{w}(\mathbf{x}_{i}^{p}, \boldsymbol{\pi})}{\partial \pi_{\nu}} - \frac{\partial \bar{\mathbf{x}}_{\alpha_{i}}}{\partial \pi_{\nu}}\right).$$

WcsFit (2)

- The user provides the fitted model at run time, by specifying a combination of transformations.
- The code does its best to eliminate degeneracies, but there is no failsafe algorithm.
- An example of the fitted components:

Table 2. Components of the DECam astrometric model

WcsFit for Decam

Chromatic terms (per chip/band) for g-i color

Large chromaticity of the Decam corrector. It can (will?) eventually become a static part of the instrument model