ZTF and Subaru

The stepping stones toward LSST

ZTF | Looking at the variable sky

ZTF @ z~0.05 = LSST @ z~0.5

+ IFU (SEDMachine) to type any SN brighter than 18.5/19mag

ZTF | Spectro follow up

Dedicated Spectrographer (SEDMachine, P60 1.5m)

ZTF latest news

- Third Filter (I) will be installed February.
- Science Survey starts in March.
- New SEDM machine end of March.
 (all transient with mag>18.5 will be typed i.e, all SNeIa z<0.07)

Activity in ZTFCosmo: Berlin (3 PI) | Stockholm (2+ PI) | France (1 PI) | Berkeley (1 PI)

ZTF | SNela Light Curve Expectation

ZTF | SNela Light Curve Expectation

ZTF | SNela Light Curve Expectation

Building the Low redshift sample

~2000 in 3 year with 3 bands (more than >10 points / band) with z<0.1

Aim at 1% photometry

All SNela will be spectroscopically typed

New era for Accurate Cosmology with nearby SNe

Subaru | Subaru Strategic Program (SSP)

a.k.a. Subaru Supernova Survey SuSHI

- Subaru / HyperSuprimeCam
 - Télescope de 8.2-m, caméra 1.8 deg²
 - 104 + 8 red-sensitive CCDs
- Subaru Strategic Program
 - o 300 nuits
 - o 3 layers (Wide, Deep, Ultra-Deep)
 - Recadencage Ultra-DEEP
 - Survey SN ultra-profond (2 x 6 mois)
- 240 SNe la
 - o 80 @ z < 0.8
 - o 80 @ 0.8 < z < 1.2
 - o 80 @ 1.2 < z < 1.5

Good training for_ LSST

ZTF is large, Subaru is deep, LSST is both

Goals

- Extend the redshift lever-arm
- Combination paper by 2020
- o FoM > 50 by 2020
- Maintain / upgrade expertise in
 - SN photometry
 - Flux metrology
- Explore analysis strategies -> LSST
 - o SN LC models
 - Malmquist bias
 - Combined fits (cosmo + LC models)
- Demonstrate ground / space complementarity
 - O HST / Subaru

Project structure

Spectro

Detection & follow-up

IR follow-up

VLT

Gemini

Subaru

Keck

Subaru/HSC (SSP)

Rolling search 2 x 6 months

HST/WFC3 100 orbits

IPMU, LPNHE, STScI, LBNL

IPMU, LPNHE

IPMU, STScI, LBNL, LPNHE ₁₄

Status of the Project

- Data taking started in Dec. 2016
 - o 6 month search
 - o COSMOS field (SNLS-D2)
 - O(1000) transients
 - o O(200) SNe Ia
 - o O(100) SNe Ia @ z<1.1
 - HST triggered on 25 z > 1 SNe -> ~ 50% final statistics
- Data taking restarted in Jan. 2018
 - 5 month search (bad weather in Dec 2017)
 - COSMOS field again (enables deep references)
- Third season possible (XMM field)
 - August 2018 -> Jan 2019
 - o z < 1.1 (no HST)

2z > 1.1 SNe sent to HST

Data quality

Detection & Photometry pipelines

In construction

- Adapted from SNLS pipeline
- With recent additions (e.g. jointcal)
- Very light and flexible pipeline infrastructure (pipelet)
- A few more man-months worth of work before we can deliver
 SNLS-grade lightcurves
- Developments on
 - Astrometry
 - Photometric uniformity
 - PSF model
 - Relative astrometry
 - Scene modeling fit

(+ pipeline / scanning infrastructure)

Ongoing work | astrometry

- Based on gastro/jointcal
 - Astrometric precision ~ 5 mas
 - o Additional developpements pending
 - Proper motions in the global fit
 - Combined fit of several epchs

Ongoing work | Photometry / calibration

• Same technique : fit for

- Stars
- Photometric flats
- ... from dithered exposures
- o ... using an external calibration catalog
- to anchor the flux scale

In developpement:

- Understand residuals (passbands?)
- Better parametrization of instrument response variations

SNLS

(as of today)

Simultaneous fit of all epochs

Perspectives / Forecasts

Dataset	FoM (JLA calibration)	FoM (calib uncertainties halved)
JLA	15	21
JLA + SSP	37	48
JLA + SSP + ZTF	56	69
JLA + SSP + ZTF + DES	~70	~86

ZTF is large, Subaru is deep, LSST is both

FoM (fixed filter position)

We compute the FoM from the covariance matrix for 2x10⁴ SNe Ia:

Backup | ZTF

e2v		
dimension	9.2 x 9.2 cm	
pixels	6.1k x 6.1k	
pixel size	15 micron	
pixel scale	1"/pixel	
outputs	4	

