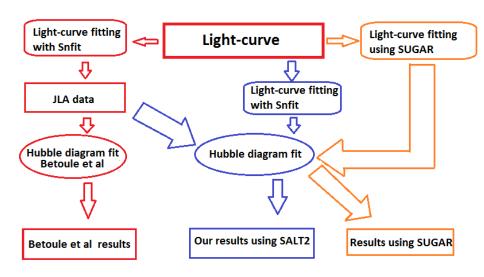


Impact of SUGAR in the cosmological analysis

Florian Mondon


PHD advisor: Emmanuel Gangler
January 18, 2018

Supernova Useful Generator And Reconstructor (SUGAR)

- SED model making by Pierre-François Leget during this PHD in 2016 based on spectral indicators.
- Sugar model:

$$M_{t,\lambda} = M_{t,\lambda,0} + \sum_{i=1}^{3} q_i \alpha_{t,\lambda,i} + A_V \left(\alpha_{\lambda} + \frac{1}{R_V} \beta_{\lambda} \right) + \Delta M_{grey}$$

- stretch and color + 2 new parameters correlated with spectral indicators
- Will this model allow to decrease the dispersion in the Hubble diagram fit?

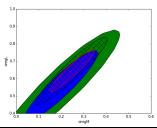
Results obtained with the full JLA samples

Λ*CDM* model:

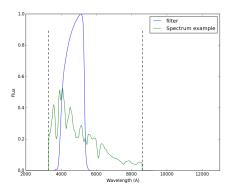
$$d_I = \frac{(1+z) c}{H_0} \int_0^z \frac{\mathrm{d}z'}{H(z')/H_0}$$

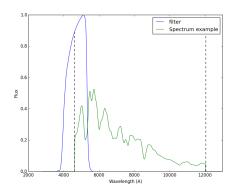
$$\frac{H(z)}{H_0} = \sqrt{\Omega_m (1+z)^3 + \Omega_{\Lambda}}$$

$$\Omega_{\Lambda}=1-\Omega_{m}$$


ŀ		Our Results	Results
-			Betoule & al.
	χ^2 $/$ d.o.f	0.93	0.93
	χ^2	682.89	682.9
	Ω_{M}	0.295 ± 0.033	0.295 ± 0.34
	α	0.141 ± 0.007	0.141 ± 0.006
	β	3.101 ± 0.081	3.101 ± 0.075
	Mb	-19.05 ± 0.02	-19.05 ± 0.02
	ΔM	-0.070 ± 0.022	-0.70 ± 0.023

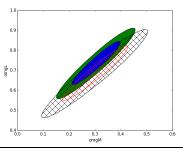
Results using only statistical covariance matrix


Results for ΛCDM:


	C _{stat+sys} Betoule &	C _{stat} Betoule & al.
	al.	
$\chi^2/\mathrm{d.o.f}$	0.93	0.98
χ^2	682.89	717.29
Ω_{M}	0.295 ± 0.033	0.288 ± 0.018
α	0.141 ± 0.007	0.140 ± 0.006
β	3.101 ± 0.081	3.139 ± 0.077
Mb	-19.05 ± 0.02	-19.044 ± 0.013
ΔM	-0.070 ± 0.022	-0.060 ± 0.012

• Confidence contour:

Problem of SUGAR wavelength coverage


• If 10% of the integrated transmission are outside SUGAR wavelenght coverage we don't select the filter.

Impact of the selection

• Results for Λ*CDM*:

	Snfit output data	Snfit output data			
	without bands selections	with bands selections			
$\chi^2/\mathrm{d.o.f}$	0.99	1.00			
χ^2	724.68	734.74			
Mean of the residuals	-0.00069	0.01088			
rms	0.1702	0.2841			
Ω_M	0.288 ± 0.018	0.306± 0.022			
α	0.140 ± 0.006	0.147 ± 0.006			
β	3.146 ± 0.077	3.125± 0.084			
Mb	-19.046 ± 0.012	-19.038 ± 0.013			
ΔΜ	-0.061 ± 0.012	-0.075 ± 0.012			

• Confidence contour:

Conclusion

- We have reproduced the results of Betoule et al. (2014)
- We have established a point of comparison to study the use of SUGAR
- The next step is to replace the SALT2 fit by the SUGAR fit to study the impact of the new model
- We must take into account the total covariance matrix
- It will be necessary to extrapolate the model in the ultraviolet