SNEMO: a new model for Type Ia Supernovae

Clare Saunders LSST-France, 18.01.2018

Why is a new model needed?

- Current models very simple
 - * Don't capture diversity of Type Ia population
 - * Potential for systematic biases

A New Model

 Trained on data from the Nearby Supernova Factory

- * Series of spectral time series templates that can be added together to fit observed spectra or photometry.
- Method combines Gaussian Processes with Expectation Maximization Factor Analysis (variant on PCA)

SNEMO = type Ia SuperNova Empirical MOdel

Captain Nemo

- * SNEMO2: 2 component model for comparison with SALT2, MLCS2k2
- * SNEMO7: 7 component model chosen for standardizing supernova magnitudes
- * SMEMO15: 15 component model for maximizing the amount of SNIa variability captured by the model.

SMEMO7 Model Components

Performance on Test Data

One Out-of-Sample SN

Std Deviation of Pulls for All Outof-Sample SNe

Simulating Performance on Real Data

- * Use model and realistic parameter distributions to sample data.
- * Add noise, do synthetic photometry.
- * Fit this and compare the fit model parameters to the simulated parameters.

Compare Fit Model to 'True' Model

Metric should be converted to see effect on fit vs. true standardized magnitude.

- * LSST filters and PhoSim data can be added to simulations.
- * Tests on real data to come.
- * Paper is being finalized.