Photometric classification of type la Supernovae
with machine learning
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Introduction

SDSS-IIISNLS3 Joint Light-curve Analysis

@ 740 spectroscopically confirmed
type la supernovae with high
quality light curves

mh = M(G) +aX, - BC

LSST Supernovae la Analysis :

@ LSST will discover hundreds of
thousands of type la supernovae

@ Spectroscopy of host galaxies for
a subsample of SN

@ Be able to automatically identify
SNe la among all the supernovae
with the photometric light curves
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Prepare the data analysis : the SPCC

The supernovae Photometric Classification Challenge (SPCC, Kessler 2010)

@ ~ 20000 SNe light curves, generated using the SuperNova ANAlysis
(SNANA) light curves simulator (Kessler et al., 2009),
@ Designed to mimich data from the DES,

@ The spectroscopically confirmed sub-sample is composed of ~ 1000 light
curves.
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Classification methods for the SPCC
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After the Challenge : post-SPCC, an updated version of the data,
including all labels, bug fixes and other improvements
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Machine learning methods for the SPCC

@ Use of representative training set,
@ SALT 2 features (to, xo, xyand c¢) with redshift,
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From Lochner et al. (2016)
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Non-representative SPPC training set

@ Real problem of mismatch between the training set and the

testing set
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From Lochner et al. (2016)
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Recent work with Deep Learning

Ouput Luyer

Charnock et al., 2017

Mean Pooling

Pooling Layer

Method Training size AUC Accuracy (%) F Purity (%) Completeness (%) Host = Merge Layer
A 10,660 0.986 £ 0.001 94.7+0.2 0.64£0.01 87.3+0.8 91411 True
A 10,660 0.981 £ 0.001 93.6+0.3 0.60£0.02 874+1.7 854426 False Hidden Layer
A 5330 097550003 929406 05T£003 S66+20 83434 Trme
A 5390 007340002 023404 055002 862424  $08438  Fake Hidden Layer
B 1,103 0.910 £ 0.012 85.9+0.9 0.31£0.03 724+04 66.1 £+ 6.0 True
5 LI08 US0LE00I6 8AGELT  UZSE005 82534 663505 Fake ——
[« ~10,660 - - 0.58 85 88 True
Example of bidirectional LTSM
C ~10,660 - - 0.51 82 85 False
c 1,045 - - 0.33 70 75 True
c 1,045 - - 0.29 67 71 False
o ~8.000 - - 0.55 - - o Method A : unidirectional LTSM [16,16]
i T]T:) o . o . . 2 Method B : unidirectional LTSM [4]
. D5 omssoss ) ) A . . Method C : Karpenka et al. (2013)
E 1,103 . . R %0 85 True Method D : Newling et al. (2011)
E 1,103 - - - 57 %0 True Method E : Lochner et al. (2016)

For a training size of 50% of the representational SPCC dataset (around 10*
supernovae) a type-la vs. non-type-la classification accuracy of 94.7% and an
area under the Receiver Operating Characteristic curve AUC of 0.986
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CNN approach
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Apromising approach : J. Pasquet Itam et al., 2017 (arXiv:1712.02777)
Mahabal et al., 2017 (arXiv:1709.06257)
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Test a CNN on augmented data

e Simulation of light curves with SNANA to mimich data from
the DES,

e Training set (spectroscopically confirmed sub-sample)
composed of ~ 43000 la and Non la,
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t-SNE Along the network
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First preliminary results

e Computation of the purity and the completeness by varying
the probability threshold,
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To conclude

@ Since the SPCC, lots of classification methods were proposed
to deal with the problem of photometric classification of SNe

@ The machine learning methods showed promising results
including or not the information of Host z

@ Deep learning methods are emerging as they are able to
identify a set of features that is context specific

@ As of now Deep learning methods suffer from the lack of
training data and the sparsity of data

@ The future photometric challenge PLAsTiCC (Photometric
LSST Astronomical Time-series Classification Challenge) could
provide solutions : Emille’s talk!
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Thank you for your attention !
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