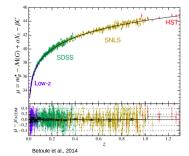
Photometric classification of type la Supernovae with machine learning

Johanna PASQUET

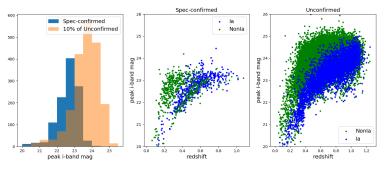
LSST France



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

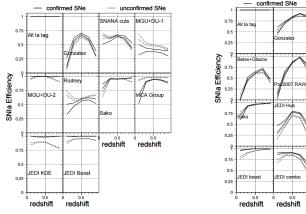
SDSS-II/SNLS3 Joint Light-curve Analysis

 740 spectroscopically confirmed type la supernovae with high quality light curves


LSST Supernovae la Analysis :

- LSST will discover hundreds of thousands of type Ia supernovae
- Spectroscopy of host galaxies for a subsample of SN
- Be able to automatically identify SNe Ia among all the supernovae with the photometric light curves

Prepare the data analysis : the SPCC


The supernovae Photometric Classification Challenge (SPCC, Kessler 2010)

- $\sim 20\,000$ SNe light curves, generated using the SuperNova ANAlysis (SNANA) light curves simulator (Kessler et al., 2009),
- Designed to mimich data from the DES,
- $\bullet\,$ The spectroscopically confirmed sub-sample is composed of \sim 1000 light curves.

Classification methods for the SPCC

no host z information

with host z information

After the Challenge : post-SPCC, an updated version of the data, including all labels, bug fixes and other improvements

unconfirmed SNe

SNANA cuts

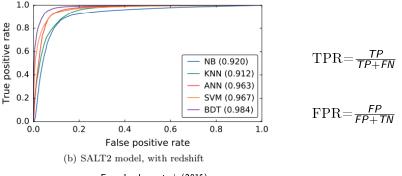
Rodney

JEDI KDE

0.5 redshift

Portsmouth y

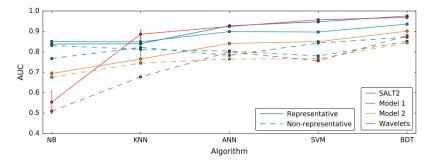
oz2007 OE


Portsmouth Hub

redshift

0.5

- Use of representative training set,
- SALT 2 features $(t_0, x_0, x_1 \text{ and } c)$ with redshift,

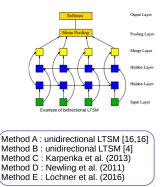


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

ntext	Methods oo●ooooo	Conclusion 0

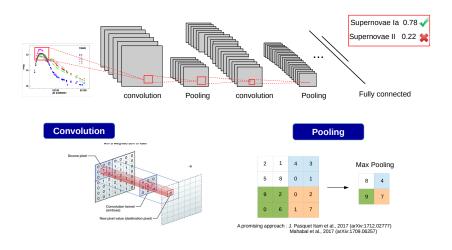
Non-representative SPPC training set

• Real problem of mismatch between the training set and the testing set


From Lochner et al. (2016)

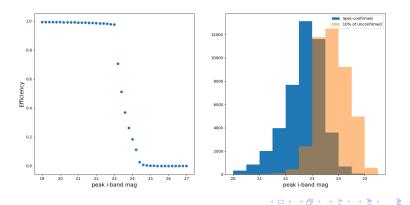
Methods 000●0000

Recent work with Deep Learning


Charnock et al., 2017

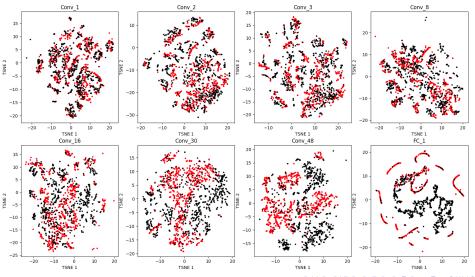
Method	Training size	AUC	Accuracy (%)	F_1	Purity (%)	Completeness (%)	Host .
A	10,660	0.986 ± 0.001	94.7 ± 0.2	0.64 ± 0.01	87.3 ± 0.8	91.4 ± 1.1	True
А	10,660	0.981 ± 0.001	93.6 ± 0.3	0.60 ± 0.02	87.4 ± 1.7	85.4 ± 2.6	False
Α	5,330	0.975 ± 0.003	92.9 ± 0.6	0.57 ± 0.03	86.6 ± 2.0	83.4 ± 3.4	True
А	5,330	0.973 ± 0.002	92.3 ± 0.4	0.55 ± 0.02	86.2 ± 2.4	80.8 ± 3.8	False
в	1,103	0.910 ± 0.012	85.9 ± 0.9	0.31 ± 0.03	72.4 ± 0.4	66.1 ± 6.0	True
в	1,103	0.901 ± 0.016	84.6 ± 1.7	0.28 ± 0.05	68.2 ± 3.4	66.3 ± 5.5	False
С	$\sim 10,660$	-	-	0.58	85	88	True
С	$\sim 10,660$	-	-	0.51	82	85	False
С	1,045			0.33	70	75	True
С	1,045	-	-	0.29	67	71	False
D	$\sim 8,000$	-	-	0.55	-		True
D	$\sim 2,000$	-	-	0.45	-	-	True
Е	1,103	0.94 ± 0.03	-	-	-	-	True
Е	1,103	0.89 ± 0.53	-	-	-	-	False
Е	1,103	-	-		90	85	True
Е	1,103	-	-	-	87	90	True

For a training size of 50% of the representational SPCC dataset (around 10^4 supernovae) a type-la vs. non-type-la classification accuracy of 94.7% and an area under the Receiver Operating Characteristic curve AUC of 0.986


CNN approach

С	on	te	

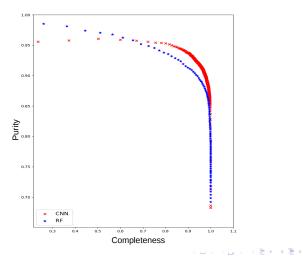
Test a CNN on augmented data


- Simulation of light curves with SNANA to mimich data from the DES,
- Training set (spectroscopically confirmed sub-sample) composed of \sim 43 000 la and Non Ia,

Context 00

Methods 00000000

t-SNE Along the network



10

First preliminary results

• Computation of the purity and the completeness by varying the probability threshold,

æ

To conclude

- Since the SPCC, lots of classification methods were proposed to deal with the problem of photometric classification of SNe
- The machine learning methods showed promising results including or not the information of Host z
- Deep learning methods are emerging as they are able to identify a set of features that is context specific
- As of now Deep learning methods suffer from the lack of training data and the sparsity of data
- The future photometric challenge PLAsTiCC (Photometric LSST Astronomical Time-series Classification Challenge) could provide solutions : Emille's talk !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thank you for your attention !

To conclude

- Since the SPCC, lots of classification methods were proposed to deal with the problem of photometric classification of SNe
- The machine learning methods showed promising results including or not the information of Host z
- Deep learning methods are emerging as they are able to identify a set of features that is context specific
- As of now Deep learning methods suffer from the lack of training data and the sparsity of data
- The future photometric challenge PLAsTiCC (Photometric LSST Astronomical Time-series Classification Challenge) could provide solutions : Emille's talk !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thank you for your attention !