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Interaction basis Propagation basis 
(mass eigenstates)

➢ Oscillation mecanism : change identity along propagation

➢ Appearance experiments 
    Probability for an νx to be detected in a different state than what it was produced :     

P (νx→νy) = f ( θ , Δm², Energy , Distance )
 

➢ Disappearance experiments
Probability for an νx to stay in the same state : 

            P (νx→νx) = 1 - P (νx→νy)

 

(in a 2 families 
case)

Contains 3 angles
θ12, θ23, θ13

Mass splittings:
Δm²ij = m²i - m²j

Oscillation 
amplitudes

Oscillation 
frequencies
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➢ Several measures at short distances (< 1 km) from reactor cores 

➢ Deficit of ~6%, 2.7 σ significant

➢ Compatible with other anomalies : GALLEX / SAGE

➢ Two hypothesis :

➢ New oscillation towards sterile  ν
at short base line 

➢ Potential bias in the prediction 
spectra

3  ν model 

3+1  ν
model 

arXiv:1703.00860v3

Best Fit (3+1 scenario)
sin²(2θ) = 0.065
Δm² = 1.7 eV²
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3  ν model 

3+1  ν
model 
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We need clear measurements in the 
best fit region :

→   Rule out or agree on the presence 
of a new oscillation : independent 

from the prediction

→   Constrain the neutrino spectra 
from reactors 

➢ Several measures at short distances (< 1 km) from reactor cores 

➢ Deficit of ~6%, 2.7 σ significant

➢ Compatible with other anomalies : GALLEX / SAGE

➢ Two hypothesis :

➢ New oscillation towards sterile  ν
at short base line 

➢ Potential bias in the prediction 
spectra
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STerile REactor Oscillation 
experiment

➢ A worldwide effort / competition 
NEOS (Korea) Solid (Belgium) Ce-Sox (Italy)

DANSS (Russia) PROSPECT (US)

Neutrino-4 (Russia) Stereo (France)

Goal : probe the sterile neutrino hypothesis by measuring the νe 

spectra from ILL (Institut Laue Langevin) reactor at different 
distances

→ 6 cells segmented detector

Strategy : relative comparison of spectral distortion between cells 

➢ International collaboration of ~ 20 researchers
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Detection principle 

➢ Inverse Beta Decay in liquid scintillator doped with Gd : 
➢ Neutrino event = correlated event = Prompt + Delayed

Prompt event : energy deposition + annihilation  →  Eν = Evis + 0.782 MeV
Delayed event : thermalization + neutron capture on Gd (~ 3 γ emission)
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Neutrino source

➢ Compact core  (24 cm only 
uncertainty on neutrino propagation)

➢ Highly enriched 235U (93%)
➢ Intensity ~ 1018 antineutrinos/sec
➢ 3-4 cycles of 50 days/year Challenging mitigation of the background 

due to neighbor experiments & cosmics

➢ 15 m.w.e
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Segmented detector 

➢ Target volume : ν detection
➢ Gamma-catcher : collect ’sγ  escaping from the target

➢ Improves detection efficiency & energy resolution
➢ Serves as background veto

➢ 48 PMTs :
➢ 4 PMTs per target cell
➢ 4 / 8 PMTs per gamma-catcher cell

S/B = 1.5
300 days signal
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➢ april 2016

➢ september 2016

Stereo Timeline

➢ august 2016

Data taking

Reactor On : 0 days  
→ reactor starting in February 2018

Reactor Off : 57 days

Sep

Oct

Nov

Dec

Janv

Fev

Mars

Avril

Mai

Juin

Juillet

Aout

Sept

Oct

Nov

Dec

Janv

2016

2017

ASN approval → Commissioning

Data taking

Reactor On : 62 days
Reactor Off : 27 days

Stereo installed & ready to take data

Maintenance during reactor shut down

2018
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Calibration (LED + n & γ sources)

~270 
PE/MeV

54Mn deployed at different heights 

Low Z dependance & Good agreement 
Data & MC

➢ Light pulses from LED (465nm) : single PE
➢ Set of sources regularly placed inside the 

detector 
➢ 54Mn is the reference calibration point

Prel
imin
ary

Prel
imin
ary
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Prel
imin
ary
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54Mn in cell 6 – 45cm : Good agreement Data-MC

Energy reconstruction

➢ Energy reconstruction tool developed to take into account unexpected effects :
➢ Photon acceptance reduced in cell 4 & front GC cell, due to mineral oil leak
➢ Light cross talks between cells have evolved along data taking, with values higher than 

expected (→ pb fixed for phase 2)

Hydrogen n-capture peak stable in time, 
6.5% resolution at 2.2 MeV
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Collected photons/MeV 
from calib runs

Light cross-talk 
between cells

Measured online + calib
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Energy reconstruction

➢ Energy reconstruction tool developed to take into account unexpected effects :
➢ Light cross talks between cells have evolved along data taking, with values higher than 

expected (→ pb fixed for phase-II)

➢ Photon acceptance reduced in cell 4 & front GC cell, due to mineral oil leak

Prel
imin
ary

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Reconstructed Energy (MeV)

0

0.2

0.4

0.6

0.8

1

C
o
u
n
ts

 (
a
.u

.)

20170222_135704
MC

54Mn in cell 6 – 45cm : Good agreement Data-MC
Quenching curve : Non-linear light production in the large 
dE/dx regime (low E – Bragg peak)

→ MC tuning in progress

Collected photons/MeV 
from calib runs

Light cross-talk 
between cells

Measured online + calib
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Detection efficiency

➢ Neutron capture efficiency using coincidences from AmBe source 
➢ n-Gd fraction ~ 88.6 +- 0.2 %
➢ MC follows relative variations of n-H/n-Gd for different cells & z-positions → validation of MC 
➢ Fine-tuning of n-Gd fraction in MC so that absolute proportion of n-H/n-Gd is the same for data & 

MC

→ We can rely on MC for the determination of n-capture efficiency
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Reactor ON / OFF background

➢ Thermic neutrons
➢ γs from n-capture 

on metals

Muon induced Reactor induced Radioactive 
decays

➢  γ radiation from 
decays 

➢ Fast neutrons 
(atmospheric 
showers)

➢ Stopping muons

A neutrino is a 
correlated pair !
Prompt + Delayed

~ 350 events / 
day

Accidental background : 2 events coming from 2 different origins
→  Shielding, topological cuts, statistical subtraction with shifted time window 

Correlated background : 2 events produced by 1 incident particle
→ Overburden (15 m.w.e), muon veto, PSD, asymmetry light collection, topology, On-Off subtraction  
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Qtail / Qtot

ν candidates

p-recoil

Muons induced background 

Pulse Shape Discrimination for fast n discrimination 

➢ Qtail / Qtot different for proton recoil & electronic recoil in LS

➢ PSD distribution of IBD candidates in the target :

→ f.o.m = 0.65, improved to 0.7 for phase 2

→ Superimposition of p-recoils population for ON & OFF

 → No correlated background induced by reactor : ok for On-Off subtraction 

fast n

N capture

P recoil

Mimic prompt 
IBD candidate 

(electronic 
e+/gamma 

recoil) 

time

total charge - Q
tot

tail charge - Q
tail

electronic recoil

proton recoil



5. Neutrino candidates search

17ENIGMASS – 7th december 2017 – Laura Bernard

Correlated pairs rates

➢ Pair selection : Energy cuts, Topology, Isolation cuts (from μ stop & spalliation), PSD,PMT asymmetry …
➢ Accidentals subtraction : very low accidental background (~50 events / day)
➢ Neutrino rate after dead time & pressure correction : ~ 350 /day 

Prel
imin
ary

Neutrinos
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Conclusion
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What’s next ?
➢ Optimize cuts & define systematics for OFF subtraction
➢ Finalize energy reconstruction for spectral analysis
➢ Publication of results from phase-I by spring 2018. Phase-II expected to be completed by mid-

2019
➢ … Wait for more neutrinos ! (Reactor On, february / march 2018)

What has been done ?
✔ Data taking : 62 days of On data + 26 days of Off-phase-I data + 57 days of Off-phase-II data
✔ Calibration, Energy reconstruction, Detector stability, Neutrino search, cosmic background 

understanding & reduction
✔ Detector repaired : 

✔  Light collection improved + light leaks are now stable, homogeneous & symmetric 
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Thank you for your attention
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Back-up

Reactor Anti-neutrino & Gallium Anomalies
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arXiv:1704.01082

➢ Second hypothesis :

Potential bias in the prediction spectra

Example : Daya Bay result  2017
➢ Disfavor the hypothesis of a new oscillation 

at 2.6 significance 
➢ Suggests that 235U may be the primary 

contributor to the RAA

Example : 4-6 MeV bump 
➢ Seen by NEOS, DAYA BAY, RENO, Double 

Chooz
➢ Linked to predictions of different 

isotopes ? ...

 

We need clear measurements in the best fit region, at short base line

→   Constrain the neutrino spectra from reactors 
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Back-up

➢ Fit of the Z boson decay width as a 
function of the number of neutrinos 
sensible to weak interaction

➢ 1990s at CERN

➢ If existence of a new neutrino, it can 
only be “sterile” 

(no interaction with weak force, only gravitational)

arXiv:hep-ex/0509008

2.9840 +- 0.0082 
number of neutrinos 
coupling to weak 
interaction

https://arxiv.org/abs/hep-ex/0509008
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Back-up

Liquid fillingFire protection
93 t setup moved 

on air cushionsn absorbers (B4C)

PE roofInner det vessel

PE + mumetal
 fast-n thermalization + capture

Magnetic field attenuation

Lead walls : 
gamma’s

Mounting at ILL, level C 



Back-up
Reactor Sources of Background

 Extraction of neutron beams for neighboring experiments.
 Extensive campaigns of characterization of n and gamma sources before shielding design.   

• Background of fast and thermal neutrons from side 
experiments →High E g’s from n-capture on metals: 
56Fe(n, g) 7.6 MeV, … 

• Activation: 41Ar in air (T1/2~2h, 1.3 MeV), primary 
water circuit (16O(n,p)16N, T1/2~7s, 6.1 MeV).

• Stray magnetic fields.

Heavy passive shielding added 
on front and side walls 



Back-up
Energy Reconstruction

 Compare Data and MC at the level of Erec, corrected to first order for light collection effects.

 Iterative fine-tune of C and LL coefficient for an accurate matching of experimental and simulated Erec 
distributions from a 54Mn source circulated in the calibration tubes.

Collected photons/MeV from 
calib runs

Cross-talk cells j I⇾
Measured online + calib

→ The vector of deposited E in each cell is 
reconstructed by inverting the M matrix:

Q i E j Cj L ji
jcells
  E j M ji

jcells


→ We don’t have access to de-correlated 
parameters alpha, L & f

We only have access to alpha * f, and an 
effective light leaks coefficient 
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Back-up

Neutrino pair search

+ PMT asymmetry for muon stops
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Back-up
Correlated pairs rates

Neutrino 
rates 
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Combined fit result:
-14.60 dayInterceptON = 772.18
-14.60 dayInterceptOFF = 426.46

-1hPa-10.40 daySlope = -4.01
/ndf = 178.04 / 1742

(IBD) candidates rates correlation with atmospheric pressure

ON-period rates

OFF-period rates

Prel
imin
ary

The shallow depth of the experiment induces a dependence of background on atmospheric 
pressure. 

Measured online to correct the rates back to a reference pressure of 1024 hPa.
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